Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Yields New Way to Create Poly-Silicon as Competitor for Fossil Fuel Energy

09.02.2011
Discovery to Cut Cost of Solar-Cell Production

Harnessing more than 30 years of photovoltaic research experience, a University of Arkansas engineering professor has found a way to increase sunlight-to-electricity conversion efficiency and reduce the cost of expensive materials needed for solar-cell production.

This technological breakthrough will decrease cost-per-watt production of solar electricity to a point at which it can compete with traditional, fossil-fuel-based methods.

“The problem with solar energy has been its cost per kilowatt hour,” said Hameed Naseem, professor of electrical engineering and director of the university’s Solid State Lab. “This applies to both production and consumption. With minimal further refinements, our technology will address this problem. The goal is to reduce the costs of silicon-based photovoltaics below those of traditional fossil-fuel-based methods such as coal, petroleum and natural gas.”

Most solar-cell technology is silicon based. There are three primary types of silicon solar cells, each named after the crystalline structure of the silicon used during fabrication:

• Mono-crystalline silicon has a single and continuous crystal lattice structure with practically zero defects or impurities.

• Poly-crystalline silicon, also called poly-silicon, comprises discrete grains, or crystals, of mono-crystalline silicon that create regions of highly uniform crystal structures separated by grain boundaries.

• Amorphous silicon is an entirely non-crystalline form of silicon that can be thought of as grains the size of the individual atoms.

Many commercialized solar cells incorporate amorphous silicon and poly-silicon, which have acceptable conversion efficiency and cost much less than mono-crystalline silicon.

The process developed by Naseem, known as topdown aluminum-induced crystallization, creates poly-silicon with crystal grains 30 times larger than grains currently produced in the photovoltaic industry. Standard poly-silicon contains grains of 0.5 to 1 micrometer, which is one-100th the diameter of a human hair. Naseem’s process yielded a grain size up to 150 micrometers, which is important because the performance of a photovoltaic device is limited primarily by defects at the boundaries of crystal grains. Increasing the size of crystal grains decreases the number of boundaries.

Traditional processing of silicon-based cells requires a heating temperature of 1,000 degrees Celsius to cause the silicon to reach a crystalline state. Naseem’s method of converting amorphous silicon into poly-silicon can be done at temperatures between 100 and 300 degrees Celsius, which saves time, materials and energy.

Naseem’s current and former students work with their teacher to test and refine the technology. Douglas Hutchings, a recent doctoral graduate of electrical engineering, partnered with Naseem and students in the Sam M. Walton College of Business to start a company, Silicon Solar Solutions LLC, which holds the licenses from the university to five patents on which the technology is based. In addition to testing and refining, the company owners plan to market the technology and identify manufacturers who are interested in integrating it into their production facilities.

Naseem and the engineers at Silicon Solar Solutions have already produced prototype solar cells that meet or exceed some performance metrics of cells made by major manufacturers. These laboratory results are competitive with commercially available solar cells and indicate the potential of Silicon Solar Solutions’ less expensive process, Hutchings said.

“Although cost-per-kilowatt hour has been the primary impediment to growth and development of solar power, this reality can be influenced by factors other than technological innovations that reduce costs,” Naseem said. “Consumer demand is one factor. As more people become aware of the problems associated with greenhouse-gas emissions, the demand for sources of clean energy goes up. This awareness and demand pressure government to invest in alternative sources of energy. This is where we are now. Now is a good time to develop solar. I predict it will take off and become a prolific and essential contributor to the nation’s power grid.”

CONTACTS:
Hameed Naseem, professor, electrical engineering
College of Engineering
479-575-6052, hanaseem@uark.edu
Douglas Hutchings, chief executive officer
Silicon Solar Solutions, LLC
479-363-1110, doug@siliconsolarsolutions.com
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Power and Electrical Engineering:

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

nachricht Plug & Play Light Solution for NOx measurement
01.12.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>