Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Yields New Way to Create Poly-Silicon as Competitor for Fossil Fuel Energy

09.02.2011
Discovery to Cut Cost of Solar-Cell Production

Harnessing more than 30 years of photovoltaic research experience, a University of Arkansas engineering professor has found a way to increase sunlight-to-electricity conversion efficiency and reduce the cost of expensive materials needed for solar-cell production.

This technological breakthrough will decrease cost-per-watt production of solar electricity to a point at which it can compete with traditional, fossil-fuel-based methods.

“The problem with solar energy has been its cost per kilowatt hour,” said Hameed Naseem, professor of electrical engineering and director of the university’s Solid State Lab. “This applies to both production and consumption. With minimal further refinements, our technology will address this problem. The goal is to reduce the costs of silicon-based photovoltaics below those of traditional fossil-fuel-based methods such as coal, petroleum and natural gas.”

Most solar-cell technology is silicon based. There are three primary types of silicon solar cells, each named after the crystalline structure of the silicon used during fabrication:

• Mono-crystalline silicon has a single and continuous crystal lattice structure with practically zero defects or impurities.

• Poly-crystalline silicon, also called poly-silicon, comprises discrete grains, or crystals, of mono-crystalline silicon that create regions of highly uniform crystal structures separated by grain boundaries.

• Amorphous silicon is an entirely non-crystalline form of silicon that can be thought of as grains the size of the individual atoms.

Many commercialized solar cells incorporate amorphous silicon and poly-silicon, which have acceptable conversion efficiency and cost much less than mono-crystalline silicon.

The process developed by Naseem, known as topdown aluminum-induced crystallization, creates poly-silicon with crystal grains 30 times larger than grains currently produced in the photovoltaic industry. Standard poly-silicon contains grains of 0.5 to 1 micrometer, which is one-100th the diameter of a human hair. Naseem’s process yielded a grain size up to 150 micrometers, which is important because the performance of a photovoltaic device is limited primarily by defects at the boundaries of crystal grains. Increasing the size of crystal grains decreases the number of boundaries.

Traditional processing of silicon-based cells requires a heating temperature of 1,000 degrees Celsius to cause the silicon to reach a crystalline state. Naseem’s method of converting amorphous silicon into poly-silicon can be done at temperatures between 100 and 300 degrees Celsius, which saves time, materials and energy.

Naseem’s current and former students work with their teacher to test and refine the technology. Douglas Hutchings, a recent doctoral graduate of electrical engineering, partnered with Naseem and students in the Sam M. Walton College of Business to start a company, Silicon Solar Solutions LLC, which holds the licenses from the university to five patents on which the technology is based. In addition to testing and refining, the company owners plan to market the technology and identify manufacturers who are interested in integrating it into their production facilities.

Naseem and the engineers at Silicon Solar Solutions have already produced prototype solar cells that meet or exceed some performance metrics of cells made by major manufacturers. These laboratory results are competitive with commercially available solar cells and indicate the potential of Silicon Solar Solutions’ less expensive process, Hutchings said.

“Although cost-per-kilowatt hour has been the primary impediment to growth and development of solar power, this reality can be influenced by factors other than technological innovations that reduce costs,” Naseem said. “Consumer demand is one factor. As more people become aware of the problems associated with greenhouse-gas emissions, the demand for sources of clean energy goes up. This awareness and demand pressure government to invest in alternative sources of energy. This is where we are now. Now is a good time to develop solar. I predict it will take off and become a prolific and essential contributor to the nation’s power grid.”

CONTACTS:
Hameed Naseem, professor, electrical engineering
College of Engineering
479-575-6052, hanaseem@uark.edu
Douglas Hutchings, chief executive officer
Silicon Solar Solutions, LLC
479-363-1110, doug@siliconsolarsolutions.com
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>