Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Assesses Environmental Impact of Organic Solar Cells

20.09.2010
Study evaluates the manufacture, material use and performance of solar cell technology

Solar energy could be a central alternative to petroleum-based energy production. However, current solar-cell technology often does not produce the same energy yield and is more expensive to mass-produce. In addition, information on the total effect of solar energy production on the environment is incomplete, experts say.

To better understand the energy and environmental benefits and detriments of solar power, a research team from Rochester Institute of Technology has conducted one of the first life-cycle assessments of organic solar cells. The study found that the embodied energy — or the total energy required to make a product — is less for organic solar cells compared with conventional inorganic devices.

“This analysis provides a comprehensive assessment of how much energy it takes to manufacture an organic solar cell, which has a significant impact on both the cost and environmental impact of the technology,” says Brian Landi, assistant professor of chemical engineering at RIT and a faculty advisor on the project “Organic solar cells are flexible and lightweight, and they have the promise of low-cost solution processing, which can have advantages for manufacturing over previous-generation technologies that primarily use inorganic semiconductor materials,” adds Annick Anctil, lead researcher on the study and a fourth-year doctoral candidate in RIT’s doctoral program in sustainability. “However, previous assessments of the energy and environmental impact of the technology have been incomplete and a broader analysis is needed to better evaluate the overall effect of production and use.”

The study sought to calculate the total energy use and environmental impact of the material collection, fabrication, mass production and use of organic solar cells through a comprehensive life-cycle assessment of the technology.

According to Anctil, previous life-cycle assessments had not included a component-by-component breakdown of the individual materials present in an organic solar cell or a calculation of the total energy payback of the device, which is defined as the energy produced from its use versus the energy needed to manufacture the cell.

The team found that when compared to inorganic cells, the energy payback time for organic solar cells was lower. Ongoing studies to verify the device stability are still warranted, however.

“The data produced will help designers and potential manufacturers better assess how to use and improve the technology and analyze its feasibility versus other solar and alternative-energy technologies,” adds Landi.

The team presented the results at the Institute for Electrical and Electronics Engineers 2010 Photovoltaic Specialists Conference. Anctil, who won a student award at the conference for best research, hopes to further analyze the environmental impacts of solar cell development with additional life-cycle assessments of other types of solar cell technology.

The study was funded through the United States Department of Energy and also included researchers from RIT’s Golisano Institute for Sustainability and NanoPower Research Labs.

William Dube | EurekAlert!
Further information:
http://www.rit.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>