Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests scientists have overestimated capacity of wind farms to generate power

27.02.2013
People think of wind as an energy source with few limits, offering an unending power source with distinct capacity advantages over sources that deplete, such as fossil fuel.

Yet, new research in mesoscale atmospheric modeling by UNC Charlotte's Amanda S. Adams and Harvard University's David W. Keith, published Monday in the journal Environmental Research Letters, suggests that the power capacity of large-scale wind farms may have been significantly overestimated.

With large-scale wind farms, as many as hundreds of turbines mounted on tall towers and connected to the electrical grid capture the kinetic energy of the wind. Each wind turbine creates a "wind shadow" behind it, in which the turning blades slow the air. In an effort to reduce the impact of the wind shadows, wind farms space the turbines apart, while still locating as many turbines as they can on the land.

Current estimates of the global wind power resource over land range from 56 to 400 terawatts. Most of these estimates assume implicitly that the turbines extracting the wind energy have little impact on the atmosphere and, therefore, little effect on the energy production.

The new research says that scientists have underestimated the impact that large numbers of wind turbines have on energy production within large farms. Estimates of wind capacity that ignore the effect of wind turbine drag on local winds have assumed that wind power production of 2 and 4 watts per square meter could be sustained over large areas.

The new modeling results suggest that the generating capacity is more likely limited to about 1 watt per square meter at wind farms that are larger than 100 square kilometers.

"It's easy to mistake the term renewable with the term unlimited when discussing energy," Adams said. "Just because you can keep generating new energy from a source does not mean you can generate energy in an unlimited amount."

The research suggests the potential for wind energy could be significantly less than previously thought.

"It's important to take into account all factors impacting the wind energy, so we can assess the capacity of this critical power resource," Adams said. "One of the inherent challenges is how harvesting the resource changes it, making it difficult to accurately calculate how much energy can be produced. The modeling we have done provides information that can help in the understanding of our ability to count on renewable energy sources."

The research also considers the impact of wind energy production on temperatures and by extension possibly climate. Wind farms change the natural wind shear and produce various scales of turbulence. Higher potential temperatures are mixed downward due to this turbulence and result in low level warming, the research indicates.

"Our research suggests that how densely the turbines are placed affects not only energy production but also environmental impacts," Adams said. "We see this impact on average temperatures not only at large-scale farms, but also in small-density wind farms. Some things to consider are the magnitude of temperature changes and also the size of the area affected. We think these findings indicate that additional research is needed in these areas."

The Natural Sciences and Engineering Research Council of Canada funded the research.

Adams' primary research interests focus on mesoscale phenomena, processes, and modeling with an emphasis on phenomena that involve boundary layer processes and/or topographic influences. In recent years, she and her research group at UNC Charlotte have focused on the link between small-scale processes and climate, particularly at the atmosphere and earth surface interface. Her research group concentrates primarily on question at the interface between energy, weather and climate.

Current questions her group is addressing include: How will large scale wind energy development impact the Great Plains low level jet? What are the meteorological conditions that lead to wind turbine icing? How does temperature variability in urban areas impact electricity demand? Can we quantify the risks of off shore wind turbines to hurricanes? The energy-related research that Adams' group is conducting includes collaborations with San Diego Gas & Electric, Xcel Energy, and the Weather Underground.

Buffie Stephens, 704-687-5830 buffiestephens@uncc.edu
Source: Amanda Adams, 704-687-5984 manda.adams@uncc.edu

Buffie Stephens | EurekAlert!
Further information:
http://www.uncc.edu

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>