Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests scientists have overestimated capacity of wind farms to generate power

27.02.2013
People think of wind as an energy source with few limits, offering an unending power source with distinct capacity advantages over sources that deplete, such as fossil fuel.

Yet, new research in mesoscale atmospheric modeling by UNC Charlotte's Amanda S. Adams and Harvard University's David W. Keith, published Monday in the journal Environmental Research Letters, suggests that the power capacity of large-scale wind farms may have been significantly overestimated.

With large-scale wind farms, as many as hundreds of turbines mounted on tall towers and connected to the electrical grid capture the kinetic energy of the wind. Each wind turbine creates a "wind shadow" behind it, in which the turning blades slow the air. In an effort to reduce the impact of the wind shadows, wind farms space the turbines apart, while still locating as many turbines as they can on the land.

Current estimates of the global wind power resource over land range from 56 to 400 terawatts. Most of these estimates assume implicitly that the turbines extracting the wind energy have little impact on the atmosphere and, therefore, little effect on the energy production.

The new research says that scientists have underestimated the impact that large numbers of wind turbines have on energy production within large farms. Estimates of wind capacity that ignore the effect of wind turbine drag on local winds have assumed that wind power production of 2 and 4 watts per square meter could be sustained over large areas.

The new modeling results suggest that the generating capacity is more likely limited to about 1 watt per square meter at wind farms that are larger than 100 square kilometers.

"It's easy to mistake the term renewable with the term unlimited when discussing energy," Adams said. "Just because you can keep generating new energy from a source does not mean you can generate energy in an unlimited amount."

The research suggests the potential for wind energy could be significantly less than previously thought.

"It's important to take into account all factors impacting the wind energy, so we can assess the capacity of this critical power resource," Adams said. "One of the inherent challenges is how harvesting the resource changes it, making it difficult to accurately calculate how much energy can be produced. The modeling we have done provides information that can help in the understanding of our ability to count on renewable energy sources."

The research also considers the impact of wind energy production on temperatures and by extension possibly climate. Wind farms change the natural wind shear and produce various scales of turbulence. Higher potential temperatures are mixed downward due to this turbulence and result in low level warming, the research indicates.

"Our research suggests that how densely the turbines are placed affects not only energy production but also environmental impacts," Adams said. "We see this impact on average temperatures not only at large-scale farms, but also in small-density wind farms. Some things to consider are the magnitude of temperature changes and also the size of the area affected. We think these findings indicate that additional research is needed in these areas."

The Natural Sciences and Engineering Research Council of Canada funded the research.

Adams' primary research interests focus on mesoscale phenomena, processes, and modeling with an emphasis on phenomena that involve boundary layer processes and/or topographic influences. In recent years, she and her research group at UNC Charlotte have focused on the link between small-scale processes and climate, particularly at the atmosphere and earth surface interface. Her research group concentrates primarily on question at the interface between energy, weather and climate.

Current questions her group is addressing include: How will large scale wind energy development impact the Great Plains low level jet? What are the meteorological conditions that lead to wind turbine icing? How does temperature variability in urban areas impact electricity demand? Can we quantify the risks of off shore wind turbines to hurricanes? The energy-related research that Adams' group is conducting includes collaborations with San Diego Gas & Electric, Xcel Energy, and the Weather Underground.

Buffie Stephens, 704-687-5830 buffiestephens@uncc.edu
Source: Amanda Adams, 704-687-5984 manda.adams@uncc.edu

Buffie Stephens | EurekAlert!
Further information:
http://www.uncc.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>