Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research project adopts entirely new approach to developing micro-electromechanical systems (MEMS)

07.02.2013
The design of micro-electromechanical systems (MEMS) is about to undergo a technological revolution: experts from research institutions and industry are investigating entirely new methods for developing MEMS.

They are working together in the research project known as “Circuit Diagram-Based Design of MEMS for Applications in Optics and Robotics” – or MEMS2015 for short.


Insight of a hybrid inertial sensor package which is assembled in electronic control units (ECU).
Source: Robert Bosch GmbH

This project is funded by the Federal Ministry of Education and Research (BMBF) and coordinated by Robert Bosch GmbH. The aim is to develop the first ever universal design methodology for MEMS to plug the gaps between electronics and mechanics design, manufacturing, and subsequent integration into products.

MEMS are tiny components that require a minimum of space to measure and electronically process parameters such as acceleration, pressure, distance, temperature, light, or chemical concentrations. With their sophisticated, compact sensor and actuator systems, MEMS can for instance be used to ensure that airbags are inflated promptly before a car is involved in a collision, to measure blood pressure or oxygen content in intensive care applications, or to enable digital cameras to eliminate camera shake.

Potential 50 percent increase in the market for MEMS

The new development methods for MEMS will allow innovative sensor and actuator systems to be developed – providing robots, for instance, with more effective sight and touch in the future. What is more, the potential market for MEMS stands to increase by up to 50 percent as a result. Using a type of modular system, the MEMS2015 researchers aim to plug the gaps between chip and sensor manufacturing on the one hand and the subsequent integration of the modules into products on the other. This will substantially increase the opportunities for widespread use of MEMS in the professional and security-relevant segments. The new methods will also allow small and medium-sized enterprises to design MEMS and integrate them into their products much more often, as well as in a wider range of configurations than at present.

Projecting images directly onto the retina

These new development methods for MEMS will pave the way for entirely new solutions in the leading-edge applications of optics and robotics. This opens up the prospect of the wide-ranging use of micromirror arrays, similar to the devices already being used in projectors. This technology allows images to be projected directly onto the retina using special glasses. In robotics, force sensors and profilometers can be developed that analyze surfaces even more accurately than before, or that simulate an extremely precise sense of touch. The project findings are being verified as part of the project on the basis of real MEMS prototypes which, in turn, serve as demonstrators.

“The project opens up innovations in mechanical engineering and process plant engineering by using powerful sensor and actuator systems based on groundbreaking MEMS and chip technologies,” says Dr. Mirco Meiners, the project coordinator for MEMS2015 who works in the Bosch Automotive Electronics division. “The clear focus of funding from Germany’s Federal Ministry of Education and Research (BMBF) helps companies maintain their lead in innovation for key technology topics and develop new innovative, complex products.”

“The MEMS2015 project raises the bar when it comes to the quality and especially the productivity of MEMS design,” says Prof. Dr. Ralf Sommer, the scientific director of the Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH, one of the eight partners in the project. “Basic concepts such as circuit diagram-based design, which are already successfully used in microelectronics design, are now being transferred to MEMS design. This offers users enormous advantages: for one thing, MEMS2015 facilitates new highly complex products, such as micromirror arrays, and speeds up the process of bringing them to market. For another, the project will allow us in the long run to produce a Lego-brick-style design. This will above all benefit small and medium-sized enterprises, allowing them to put together their own individual, tailor-made solutions in a flexible modular MEMS and electronics system.”

Eight partners from research and industry

The MEMS2015 research project, which has a three-year term and around 3.5 million euros in funding from Germany’s Federal Ministry of Education and Research (BMBF) as part of the German government’s High-Tech Strategy and the ICT 2020 development program, brings together the potential of eight partners from research and industry: Cadence Design Systems GmbH, Carl Zeiss SMT GmbH, Institut für Mikroelektronik- und Mechatronik-Systeme GmbH, Robert Bosch GmbH, the Technical University of Munich, TETRA Gesellschaft für Sensorik, Robotik und Automation mbH, the University of Bremen, and X-FAB Semiconductor Foundries AG. The edacentrum in Hannover is responsible for project management for MEMS2015.

For more information, visit http://www.edacentrum.de/mems2015

Press Contact:
Ralf Popp, edacentrum, Phone: +49 (511) 762-19697, Fax: +49 (511) 762-19695, popp@edacentrum.de

About edacentrum
The edacentrum is an independent institution dedicated to the promotion of research and development in the area of electronic design automation (EDA). Founded by the German microelectronics industry, it was funded during its early years by the German Federal Ministry of Education and Research (BMBF). The primary role of edacentrum is to initiate, evaluate and supervise industry-driven R&D projects, and to offer a comprehensive spectrum of services to support all matters concerning EDA development. Moreover, by encouraging EDA cluster research projects and EDA networks and by providing a communication platform for the EDA community, edacentrum brings together and reinforces the EDA expertise of universities and research institutes. The edacentrum seeks to increase awareness among upper management, the public and the political arena, of the critical importance of design automation for solving complex system and semiconductor problems, especially those associated with micro- and nanoelectronics.

Ralf Popp | idw
Further information:
http://www.edacentrum.de
http://www.edacentrum.de/mems2015

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>