Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research to create reliable electronic systems

06.10.2008
Researchers at the University of the West of England (UWE) are to carry out ground breaking research with collaborators from the University of York* into creating electronic systems that can diagnose and heal their own faults in ways similar to the human immune system.

The project is called SABRE (Self-healing cellular Architectures for Biologically-inspired highly Reliable Electronic systems). The part of the project to be carried out in Bristol will be based at Bristol Robotics lab (BRL), which is jointly run by the University of Bristol and UWE.

Increasingly, our lives are intertwined with digital electronic equipment. From gadgets to household appliances, computers, and the life-saving systems which ensure that cars and planes are safe, these devices can be extremely complex and often have hundreds of thousands of components on a single chip. However, if one component fails this commonly causes catastrophic failure of the whole system. Electronic hardware designers have achieved fantastic levels of reliability so far but, as such devices become more and more complex, such instances can only become more common. Under fault conditions it would, therefore, be highly desirable for the system to be able to cope with faults, and continue to operate effectively even if one or more components have failed; but this is not the way electronic systems are currently designed.

Drawing on inspiration from nature, the researchers at York and Bristol will look for ways to create electronic systems based on a structure of ‘cells’ which have the ability to work together to defend system integrity, diagnose faults, and heal themselves. The researchers will be looking at the way complex biological systems, such as the defence mechanism of the human body, are able to deal with faults and still keep functioning.

Dr. Tony Pipe, (Bristol Robotics Laboratory) explains, “When an electronic system malfunctions it should be able to cope with minor faults and continue to operate effectively even if one or more components fail. Currently, those few electronic systems that are designed to be fault-tolerant either replicate whole sub-systems at a high level in the overall architecture (similar to having two lungs), or roll back to a simpler, safer mode when there is a malfunction, but still replicate the whole system or a large part of it in a simplified form. This is a vital function in current safety-critical systems such as anti-lock breaking, fly-by-wire aircraft, space exploration, as well as industrial control and shutdown systems.

“However highly complex living organisms such as the human body are able to deal with malfunctions at a much lower level, that of the cells, defending the system overall by repairing damage to cells, thus maintaining normal functionality. The human body is both reliable and highly complex. It is this ability that we want to try to replicate in electronic systems. By studying the multi-cellular structure of living organisms and their protective immune systems, we hope to be able to design ‘nature-like’ fault tolerant architectures for electronics. This research has the potential to influence the way complex electronic systems are designed in the future, creating a new generation of electronic systems which are fault tolerant and self healing.”

The research will pave the way for a biologically inspired unique design approach for electronic systems across a wide range of applications, from communication through computing and control, to systems operating in safety-critical or hostile environments.

The project is funded by EPSRC.

Jane Kelly | alfa
Further information:
http://www.uwe.ac.uk
http://info.uwe.ac.uk/news/UWENews/article.asp?item=1358&year=2008

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>