New Research Brings “Invisible” Into View

The compact system can produce synthetically focused images of objects – at different planes in front of the camera – at speeds of up to 30 images per second. A laptop computer then collects the signal and displays the image in real-time for review. The entire system, powered by a battery similar to the size used in laptops, can run for several hours, rendering it portable.

“In the not-so-distant future, the technology may be customized to address many critical inspection needs, including detecting defects in thermal insulating materials that are found in spacecraft heat insulating foam and tiles, space habitat structures, aircraft radomes and composite-strengthened concrete bridge members,” says Dr. Reza Zoughi, the Schlumberger Distinguished Professor of Electrical Engineering at Missouri S&T, who is leading the research effort.

The technology could help medical professionals detect and monitor a variety of skin conditions in humans, including cancer and burns. It could also help Homeland Security personnel detect concealed contraband (such as weapons). Even homeowners could see a direct benefit from the technology as it potentially could be used to detect termite damage.

The idea for developing a real-time, portable camera came to Zoughi in 1998 while he was on sabbatical in France. In 2007, Zoughi’s research group completed the first prototype and has spent the past two years increasing its size and overall efficiency.

“Unlike X-rays, microwaves are non-ionizing and may cause some heating effect,” Zoughi says. “However, the high sensitivity and other characteristics of this camera enables it to operate at a low-power level.”

Currently the camera operates in the transmission mode, meaning objects must pass between a transmitting source and its collector to be reviewed. The team is working on designing and developing a one-sided version of it, which will make it operate in a similar fashion to a video camera.

“Further down the road, we plan to develop a wide-band camera capable of producing 3D or holographic images,” Zoughi adds.

Zoughi’s research group has received partial funding from NASA Marshall Space Flight Center to support this research. His team includes M.T. Ghasr, post-doctoral fellow of electrical and computer engineering, and a number of other researchers and students.

A video demonstration of the camera is available at http://www.youtube.com/watch?v=eKOXzwa6Tqs .

Media Contact

Mindy Limback Newswise Science News

More Information:

http://www.mst.edu

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors