Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report Examines Potential of Energy Storage Technologies for Next-Generation Electrical Grid

20.01.2011
A new report released by The Minerals, Metals, & Materials Society (TMS), in support of the U.S. Department of Energy’s (DOE) Office of Electricity Delivery and Energy Reliability and the Advanced Research Projects Agency-Energy (ARPA-E), offers an initial assessment of materials science advances and breakthroughs that could improve performance and lower costs of electrical energy storage (EES) devices for the future electrical grid.

Advanced Materials and Devices for Stationary Electrical Energy Storage Applications documented the findings of a multidisciplinary workshop of materials science experts convened by TMS, in conjunction with Sandia National Laboratories and the Pacific Northwest National Laboratory, last summer.

In addition to TMS members, the workshop drew on the knowledge and expertise from the membership of ASM International, the American Ceramic Society, the Electrochemical Society, and the Materials Research Society.

Making renewable energy, such as wind and solar, a more reliable, cost-effective, and widely utilized source of electricity in the United States is dependent on the development of practical EES technologies that can be deployed at the grid scale.

Renewable energy technologies pose significant challenges for integration into the electrical grid because of their intermittent nature. Electrical energy storage smoothes out this variability—when the wind turbine stops turning or the solar panel has no sun to capture—by providing a means to store energy for back-up power, load shifting, transmission and distribution deferral, and energy arbitrage needs.

Until recently, however, stationary electrical energy storage has been relatively unexplored, with the needs and requirements for optimal performance at the grid level still largely undefined. In addition, most EES technologies currently face significant economic and technical challenges for market entrance.

Both the workshop and resulting report emphasize solutions that could be realistically deployed at the grid scale with DOE involvement in a relatively short time frame—present day through 2030, with particular emphasis on the one-to-five-year and five-to-10 year time blocks. The report provides guidance to the DOE for advancing an array of EES technologies, including advanced lead-acid and lead-carbon batteries; lithium-ion batteries; sodium-based batteries; flow batteries; power technologies such as high-speed flywheels and electrochemical capacitors; and emerging technologies such as metal-air batteries, liquid metal systems, regenerative fuel cells, and advanced compressed-air energy storage.

Recognizing that each storage technology has its own specific limitations and potential solutions, the report also recommends several key advanced materials focus areas that could significantly encourage commercial success across the board.

Basic materials research, for instance, needs to surface more effective, safer, inexpensive, and robust electrochemical materials combinations, as well as explore readily available materials such as iron, aluminum, magnesium, and copper for use in EES technologies. Advanced electrochemical combinations and the more efficient utilization of current electrolytes and electrodes also have the potential to increase conductivity, amplify capacity, reduce resistance, improve thermal tolerance, and extend the life of energy storage devices.

Engineering electrolytes into thin and flexible crystalline solids likewise offer an opportunity to increase efficiency compared to systems with liquid electrolytes. Improved membranes and seals to help limit contamination, novel cell and stack designs for particular stationary applications, and nanomaterials that can lead to development of high-power and quick-response energy storage devices also factor in the report’s recommendations.

The complete report, as well as a summary article and additional background information on the project, can be accessed on the project home page of the TMS Energy website at http://energy.tms.org/initiatives/AMSEES.aspx.

Also available for download is Electric Power Industry Needs for Grid-Scale Storage Applications, the report of a complementary workshop organized by Sandia, with support from TMS, that convened stakeholders from the electric power industry to discuss targets for EES in specific grid applications. This information was used to frame the discussion for the Advanced Materials and Devices for Stationary Electrical Energy Storage Applications report. High resolution images related to both reports are available in the TMS Energy image library at http://energy.tms.org/pressroom.aspx.

About TMS
TMS is a member-driven international professional society dedicated to fostering the exchange of learning and ideas across the entire range of materials science and engineering (MSE), from minerals processing and primary metals production, to basic research and the advanced applications of materials. Of particular interest to TMS and its members through its history has been the role of MSE in addressing both short- and long-term energy challenges. Recently, in response to the needs of both society and the MSE professionals it serves, TMS has committed to an even sharper, more strategic focus on materials-enabled energy technology—TMS Energy. The goals of TMS Energy are to provide leadership, facilitation, and resources that generate and support effective energy solutions based on the innovative development and use of materials. The Advanced Materials and Devices for Stationary Electrical Energy Storage Applications project is one such effort of the TMS Energy initiative. Additional information on TMS Energy can be found at http://energy.tms.org.

Patti Dobranski | Newswise Science News
Further information:
http://energy.tms.org

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>