Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Report Examines Potential of Energy Storage Technologies for Next-Generation Electrical Grid

A new report released by The Minerals, Metals, & Materials Society (TMS), in support of the U.S. Department of Energy’s (DOE) Office of Electricity Delivery and Energy Reliability and the Advanced Research Projects Agency-Energy (ARPA-E), offers an initial assessment of materials science advances and breakthroughs that could improve performance and lower costs of electrical energy storage (EES) devices for the future electrical grid.

Advanced Materials and Devices for Stationary Electrical Energy Storage Applications documented the findings of a multidisciplinary workshop of materials science experts convened by TMS, in conjunction with Sandia National Laboratories and the Pacific Northwest National Laboratory, last summer.

In addition to TMS members, the workshop drew on the knowledge and expertise from the membership of ASM International, the American Ceramic Society, the Electrochemical Society, and the Materials Research Society.

Making renewable energy, such as wind and solar, a more reliable, cost-effective, and widely utilized source of electricity in the United States is dependent on the development of practical EES technologies that can be deployed at the grid scale.

Renewable energy technologies pose significant challenges for integration into the electrical grid because of their intermittent nature. Electrical energy storage smoothes out this variability—when the wind turbine stops turning or the solar panel has no sun to capture—by providing a means to store energy for back-up power, load shifting, transmission and distribution deferral, and energy arbitrage needs.

Until recently, however, stationary electrical energy storage has been relatively unexplored, with the needs and requirements for optimal performance at the grid level still largely undefined. In addition, most EES technologies currently face significant economic and technical challenges for market entrance.

Both the workshop and resulting report emphasize solutions that could be realistically deployed at the grid scale with DOE involvement in a relatively short time frame—present day through 2030, with particular emphasis on the one-to-five-year and five-to-10 year time blocks. The report provides guidance to the DOE for advancing an array of EES technologies, including advanced lead-acid and lead-carbon batteries; lithium-ion batteries; sodium-based batteries; flow batteries; power technologies such as high-speed flywheels and electrochemical capacitors; and emerging technologies such as metal-air batteries, liquid metal systems, regenerative fuel cells, and advanced compressed-air energy storage.

Recognizing that each storage technology has its own specific limitations and potential solutions, the report also recommends several key advanced materials focus areas that could significantly encourage commercial success across the board.

Basic materials research, for instance, needs to surface more effective, safer, inexpensive, and robust electrochemical materials combinations, as well as explore readily available materials such as iron, aluminum, magnesium, and copper for use in EES technologies. Advanced electrochemical combinations and the more efficient utilization of current electrolytes and electrodes also have the potential to increase conductivity, amplify capacity, reduce resistance, improve thermal tolerance, and extend the life of energy storage devices.

Engineering electrolytes into thin and flexible crystalline solids likewise offer an opportunity to increase efficiency compared to systems with liquid electrolytes. Improved membranes and seals to help limit contamination, novel cell and stack designs for particular stationary applications, and nanomaterials that can lead to development of high-power and quick-response energy storage devices also factor in the report’s recommendations.

The complete report, as well as a summary article and additional background information on the project, can be accessed on the project home page of the TMS Energy website at

Also available for download is Electric Power Industry Needs for Grid-Scale Storage Applications, the report of a complementary workshop organized by Sandia, with support from TMS, that convened stakeholders from the electric power industry to discuss targets for EES in specific grid applications. This information was used to frame the discussion for the Advanced Materials and Devices for Stationary Electrical Energy Storage Applications report. High resolution images related to both reports are available in the TMS Energy image library at

About TMS
TMS is a member-driven international professional society dedicated to fostering the exchange of learning and ideas across the entire range of materials science and engineering (MSE), from minerals processing and primary metals production, to basic research and the advanced applications of materials. Of particular interest to TMS and its members through its history has been the role of MSE in addressing both short- and long-term energy challenges. Recently, in response to the needs of both society and the MSE professionals it serves, TMS has committed to an even sharper, more strategic focus on materials-enabled energy technology—TMS Energy. The goals of TMS Energy are to provide leadership, facilitation, and resources that generate and support effective energy solutions based on the innovative development and use of materials. The Advanced Materials and Devices for Stationary Electrical Energy Storage Applications project is one such effort of the TMS Energy initiative. Additional information on TMS Energy can be found at

Patti Dobranski | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>