Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report Examines Potential of Energy Storage Technologies for Next-Generation Electrical Grid

20.01.2011
A new report released by The Minerals, Metals, & Materials Society (TMS), in support of the U.S. Department of Energy’s (DOE) Office of Electricity Delivery and Energy Reliability and the Advanced Research Projects Agency-Energy (ARPA-E), offers an initial assessment of materials science advances and breakthroughs that could improve performance and lower costs of electrical energy storage (EES) devices for the future electrical grid.

Advanced Materials and Devices for Stationary Electrical Energy Storage Applications documented the findings of a multidisciplinary workshop of materials science experts convened by TMS, in conjunction with Sandia National Laboratories and the Pacific Northwest National Laboratory, last summer.

In addition to TMS members, the workshop drew on the knowledge and expertise from the membership of ASM International, the American Ceramic Society, the Electrochemical Society, and the Materials Research Society.

Making renewable energy, such as wind and solar, a more reliable, cost-effective, and widely utilized source of electricity in the United States is dependent on the development of practical EES technologies that can be deployed at the grid scale.

Renewable energy technologies pose significant challenges for integration into the electrical grid because of their intermittent nature. Electrical energy storage smoothes out this variability—when the wind turbine stops turning or the solar panel has no sun to capture—by providing a means to store energy for back-up power, load shifting, transmission and distribution deferral, and energy arbitrage needs.

Until recently, however, stationary electrical energy storage has been relatively unexplored, with the needs and requirements for optimal performance at the grid level still largely undefined. In addition, most EES technologies currently face significant economic and technical challenges for market entrance.

Both the workshop and resulting report emphasize solutions that could be realistically deployed at the grid scale with DOE involvement in a relatively short time frame—present day through 2030, with particular emphasis on the one-to-five-year and five-to-10 year time blocks. The report provides guidance to the DOE for advancing an array of EES technologies, including advanced lead-acid and lead-carbon batteries; lithium-ion batteries; sodium-based batteries; flow batteries; power technologies such as high-speed flywheels and electrochemical capacitors; and emerging technologies such as metal-air batteries, liquid metal systems, regenerative fuel cells, and advanced compressed-air energy storage.

Recognizing that each storage technology has its own specific limitations and potential solutions, the report also recommends several key advanced materials focus areas that could significantly encourage commercial success across the board.

Basic materials research, for instance, needs to surface more effective, safer, inexpensive, and robust electrochemical materials combinations, as well as explore readily available materials such as iron, aluminum, magnesium, and copper for use in EES technologies. Advanced electrochemical combinations and the more efficient utilization of current electrolytes and electrodes also have the potential to increase conductivity, amplify capacity, reduce resistance, improve thermal tolerance, and extend the life of energy storage devices.

Engineering electrolytes into thin and flexible crystalline solids likewise offer an opportunity to increase efficiency compared to systems with liquid electrolytes. Improved membranes and seals to help limit contamination, novel cell and stack designs for particular stationary applications, and nanomaterials that can lead to development of high-power and quick-response energy storage devices also factor in the report’s recommendations.

The complete report, as well as a summary article and additional background information on the project, can be accessed on the project home page of the TMS Energy website at http://energy.tms.org/initiatives/AMSEES.aspx.

Also available for download is Electric Power Industry Needs for Grid-Scale Storage Applications, the report of a complementary workshop organized by Sandia, with support from TMS, that convened stakeholders from the electric power industry to discuss targets for EES in specific grid applications. This information was used to frame the discussion for the Advanced Materials and Devices for Stationary Electrical Energy Storage Applications report. High resolution images related to both reports are available in the TMS Energy image library at http://energy.tms.org/pressroom.aspx.

About TMS
TMS is a member-driven international professional society dedicated to fostering the exchange of learning and ideas across the entire range of materials science and engineering (MSE), from minerals processing and primary metals production, to basic research and the advanced applications of materials. Of particular interest to TMS and its members through its history has been the role of MSE in addressing both short- and long-term energy challenges. Recently, in response to the needs of both society and the MSE professionals it serves, TMS has committed to an even sharper, more strategic focus on materials-enabled energy technology—TMS Energy. The goals of TMS Energy are to provide leadership, facilitation, and resources that generate and support effective energy solutions based on the innovative development and use of materials. The Advanced Materials and Devices for Stationary Electrical Energy Storage Applications project is one such effort of the TMS Energy initiative. Additional information on TMS Energy can be found at http://energy.tms.org.

Patti Dobranski | Newswise Science News
Further information:
http://energy.tms.org

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>