Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report Examines Potential of Energy Storage Technologies for Next-Generation Electrical Grid

20.01.2011
A new report released by The Minerals, Metals, & Materials Society (TMS), in support of the U.S. Department of Energy’s (DOE) Office of Electricity Delivery and Energy Reliability and the Advanced Research Projects Agency-Energy (ARPA-E), offers an initial assessment of materials science advances and breakthroughs that could improve performance and lower costs of electrical energy storage (EES) devices for the future electrical grid.

Advanced Materials and Devices for Stationary Electrical Energy Storage Applications documented the findings of a multidisciplinary workshop of materials science experts convened by TMS, in conjunction with Sandia National Laboratories and the Pacific Northwest National Laboratory, last summer.

In addition to TMS members, the workshop drew on the knowledge and expertise from the membership of ASM International, the American Ceramic Society, the Electrochemical Society, and the Materials Research Society.

Making renewable energy, such as wind and solar, a more reliable, cost-effective, and widely utilized source of electricity in the United States is dependent on the development of practical EES technologies that can be deployed at the grid scale.

Renewable energy technologies pose significant challenges for integration into the electrical grid because of their intermittent nature. Electrical energy storage smoothes out this variability—when the wind turbine stops turning or the solar panel has no sun to capture—by providing a means to store energy for back-up power, load shifting, transmission and distribution deferral, and energy arbitrage needs.

Until recently, however, stationary electrical energy storage has been relatively unexplored, with the needs and requirements for optimal performance at the grid level still largely undefined. In addition, most EES technologies currently face significant economic and technical challenges for market entrance.

Both the workshop and resulting report emphasize solutions that could be realistically deployed at the grid scale with DOE involvement in a relatively short time frame—present day through 2030, with particular emphasis on the one-to-five-year and five-to-10 year time blocks. The report provides guidance to the DOE for advancing an array of EES technologies, including advanced lead-acid and lead-carbon batteries; lithium-ion batteries; sodium-based batteries; flow batteries; power technologies such as high-speed flywheels and electrochemical capacitors; and emerging technologies such as metal-air batteries, liquid metal systems, regenerative fuel cells, and advanced compressed-air energy storage.

Recognizing that each storage technology has its own specific limitations and potential solutions, the report also recommends several key advanced materials focus areas that could significantly encourage commercial success across the board.

Basic materials research, for instance, needs to surface more effective, safer, inexpensive, and robust electrochemical materials combinations, as well as explore readily available materials such as iron, aluminum, magnesium, and copper for use in EES technologies. Advanced electrochemical combinations and the more efficient utilization of current electrolytes and electrodes also have the potential to increase conductivity, amplify capacity, reduce resistance, improve thermal tolerance, and extend the life of energy storage devices.

Engineering electrolytes into thin and flexible crystalline solids likewise offer an opportunity to increase efficiency compared to systems with liquid electrolytes. Improved membranes and seals to help limit contamination, novel cell and stack designs for particular stationary applications, and nanomaterials that can lead to development of high-power and quick-response energy storage devices also factor in the report’s recommendations.

The complete report, as well as a summary article and additional background information on the project, can be accessed on the project home page of the TMS Energy website at http://energy.tms.org/initiatives/AMSEES.aspx.

Also available for download is Electric Power Industry Needs for Grid-Scale Storage Applications, the report of a complementary workshop organized by Sandia, with support from TMS, that convened stakeholders from the electric power industry to discuss targets for EES in specific grid applications. This information was used to frame the discussion for the Advanced Materials and Devices for Stationary Electrical Energy Storage Applications report. High resolution images related to both reports are available in the TMS Energy image library at http://energy.tms.org/pressroom.aspx.

About TMS
TMS is a member-driven international professional society dedicated to fostering the exchange of learning and ideas across the entire range of materials science and engineering (MSE), from minerals processing and primary metals production, to basic research and the advanced applications of materials. Of particular interest to TMS and its members through its history has been the role of MSE in addressing both short- and long-term energy challenges. Recently, in response to the needs of both society and the MSE professionals it serves, TMS has committed to an even sharper, more strategic focus on materials-enabled energy technology—TMS Energy. The goals of TMS Energy are to provide leadership, facilitation, and resources that generate and support effective energy solutions based on the innovative development and use of materials. The Advanced Materials and Devices for Stationary Electrical Energy Storage Applications project is one such effort of the TMS Energy initiative. Additional information on TMS Energy can be found at http://energy.tms.org.

Patti Dobranski | Newswise Science News
Further information:
http://energy.tms.org

More articles from Power and Electrical Engineering:

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>