Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-organizing nanoparticles: a model for tomorrow's nanofactories

01.11.2007
With inspiration from bacteria and butterflies, researchers at Stockholm University have developed a new method that shows how nanomaterials can be produced in the future.

In an article in the prestigious journal Proceedings of the National Academy of Sciences, Professor Lennart Bergström shows how a glass bottle and a simple hobby magnet can be used to produce and arrange extremely small cubes of iron oxide in a perfectly checkered pattern.

The new method can give magnetic films with superior information storage capacity," says Lennart Bergström.

To produce nanoparticles with a defined form and size and at the same time organize them in well-ordered structures is one of the few realistic ways of producing tomorrow's nanomaterials on an industrial scale. It sounds like a dream, but the fact is that nature uses these construction principles in order to make the wings of a butterfly shimmer in all the colors of the rainbow and to create a compass needle of magnetic nanoparticles in certain bacteria.

In the article, Lennart Bergström and his colleagues show how it is possible to create a self-organizing system in which the system itself can achieve a flawless structure. Instead of slowly building up these intricate structures by for example etching, the particles are "programmed" to build the desired structure themselves. Nanoparticles are ideal building blocks for creating two- and three-dimensional structures with tailor-made properties. It is possible to combine metals, semiconductors, and magnetic nanoparticles in one and the same material, thereby obtaining entirely new combinations of properties.

"Our vision is to get nanoparticles to collaborate and construct complicated structures at will," says Lennart Bergström. "New types of nanostructured materials with unique characteristics, such as magnetic and catalytic properties, can then be created where they are most needed and in such a way that they can be readily reused. This opens up exciting possibilities to tailor the structure and function of materials, a goal for all materials chemists."

Name of article: "Magnetic field induced assembly of oriented superlattices from maghemite nanocubes"A. Ahniyaz, Y. Sakamoto, and L. Bergström, PNAS, ("early edition" published at end of week 44)

For more information: Prof. Lennart Bergström, Department of Physical, Inorganic, and Structural Chemistry, Stockholm University. cell phone: +46 (0)70-5179991; phone: +46 (0)8-16 23 68, e-mail: lennartb@inorg.su.se For images: phone: +46 (0)8-16 40 90, e-mail press@su.se

Maria Erlandsson | idw
Further information:
http://www.vr.se

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>