Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear Power Worldwide: Status and Outlook

24.10.2007
Nuclear power´s prominence as a major energy source will continue over the next several decades, according to new projections made by the International Atomic Energy Agency (IAEA), which has just published a new report, Energy, Electricity and Nuclear Power for the period up to 2030.

The IAEA makes two annual projections concerning the growth of nuclear power, a low and a high. The low projection assumes that all nuclear capacity that is currently under construction or firmly in the development pipeline gets completed and attached to the grid, but no other capacity is added. In this low projection, there would be growth in capacity from 370 GW(e) at the end of 2006 to 447 GW(e) in 2030. (A gigawatt = 1000 megawatts = 1 billion watts).

In the IAEA´s high projection - which adds in additional reasonable and promising projects and plans - global nuclear capacity is estimated to rise to 679 GW(e) in 2030. That would be an average growth rate of about 2.5%/yr.

"Our job is not so much to predict the future but to prepare for it," explains the IAEA´s Alan McDonald, Nuclear Energy Analyst. "To that end we update each year a high and low projection to establish the range of uncertainty we ought to be prepared for."

Nuclear power´s share of worldwide electricity production rose from less than 1 percent in 1960 to 16 percent in 1986, and that percentage has held essentially constant in the 21 years since 1986. Nuclear electricity generation has grown steadily at the same pace as overall global electricity generation. At the close of 2006, nuclear provided about 15 percent of total electricity worldwide.

The IAEA´s other key findings as of the end of 2006 are elaborated below.

There were 435 operating nuclear reactors around the world, and 29 more were under construction. The US had the most with 103 operating units. France was next with 59. Japan followed with 55, plus one more under construction, and Russia had 31 operating, and seven more under construction.

Of the 30 countries with nuclear power, the percentage of electricity supplied by nuclear ranged widely: from a high of 78 percent in France; to 54 percent in Belgium; 39 percent in Republic of Korea; 37 percent in Switzerland; 30 percent in Japan; 19 percent in the USA; 16 percent in Russia; 4 percent in South Africa; and 2 percent in China.

Present nuclear power plant expansion is centred in Asia: 15 of the 29 units under construction at the end of 2006 were in Asia. And 26 of the last 36 reactors to have been connected to the grid were in Asia. India currently gets less than 3% of its electricity from nuclear, but at the end of 2006 it had one-quarter of the nuclear construction - 7 of the world´s 29 reactors that were under construction. India´s plans are even more impressive: an 8-fold increase by 2022 to 10 percent of the electricity supply and a 75-fold increase by 2052 to reach 26 percent of the electricity supply. A 75-fold increase works out to an average of 9.4 percent/yr, about the same as average global nuclear growth from 1970 through 2004. So it´s hardly unprecedented.

China is experiencing huge energy growth and is trying to expand every source it can, including nuclear power. It has four reactors under construction and plans a nearly five-fold expansion by just 2020. Because China is growing so fast this would still amount to only 4 percent of total electricity.

Russia had 31 operating reactors, five under construction and significant expansion plans. There´s a lot of discussion in Russia of becoming a full fuel-service provider, including services like leasing fuel, reprocessing spent fuel for countries that are interested, and even leasing reactors.

Japan had 55 reactors in operation, one under construction, and plans to increase nuclear power´s share of electricity from 30 percent in 2006 to more than 40 percent within the next decade.

South Korea connected its 20th reactor just last year, has another under construction and has broken ground to start building two more. Nuclear power already supplies 39 percent of its electricity.

Europe is a good example of "one size does not fit all." Altogether it had 166 reactors in operation and six under construction. But there are several nuclear prohibition countries like Austria, Italy, Denmark and Ireland. And there are nuclear phase-out countries like Germany and Belgium.

There are also nuclear expansion programmes in Finland, France, Bulgaria and Ukraine. Finland started construction in 2005 on Olkiluoto-3, which is the first new Western European construction since 1991. France plans to start its next plant in 2007.

Several countries with nuclear power are still pondering future plans. The UK, with 19 operating plants, many of which are relatively old, had been the most uncertain until recently. Although a final policy decision on nuclear power will await the results of a public consultation now underway, a White Paper on energy published in May 20071/ concluded that "...having reviewed the evidence and information available we believe that the advantages [of new nuclear power] outweigh the disadvantages and that the disadvantages can be effectively managed. On this basis, the Government´s preliminary view is that it is in the public´s interest to give the private sector the option of investing in new nuclear power stations."

The US had 103 reactors providing 19 percent of the country´s electricity. For the last few decades the main developments have been improved capacity factors, power increases at existing plants and license renewals. Currently 48 reactors have already received 20-year renewals, so their licensed lifetimes are 60 years. Altogether three-quarters of the US reactors either already have license renewals, have applied for them, or have stated their intention to apply. There have been a lot of announced intentions (about 30 new reactors´ worth) and the Nuclear Regulatory Commission is now reviewing four Early Site Permit applications.

For further information, please contact: IAEA Division of Public Information, Media & Outreach Section, tel. [43-1] 2600-21273. For further details on the current status of the nuclear industry, go to the IAEA´s Power Reactor Information System (PRIS).

Press Office | EurekAlert!
Further information:
http://www.iaea.org

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>