Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance motorised wheelchairs

04.10.2007
Tekniker-Ik4, with the help of the Benevolent Fund of the Kutxa Bank, has created the NOA prototype of a wheelchair with state-of-the-art specifications.

From the very, first special emphasis has been placed on the final result of the project incorporating innovative functions and adapting to the real needs of the end users. To this end, special attention has been given to the initial phase of the definition of requirements, involving an exhaustive analysis of functions provided by the motorised wheelchairs and taking into account suggestions by users’ groups such Gene, Elkartu and Bidaideak and other persons affected by various disabilities. In this way, the “living in a wheelchair” initiative was launched which has enabled a number of researchers involved in the project to “feel” the deficiencies of current wheelchairs.

In the product development phase to date, it was clearly understood that, with the results obtained, the posterior manufacturing and marketing phases would have to be viable. In fact NOA is now ready to continue making progress in this vein.

NOA is the prototype of a comprehensive, modular and adaptable motorised wheelchair that incorporates important innovations from a mecatronics perspective and integrates advanced functions based on new technologies.

- Comprehensive, undertaking the design and development of all the mechanical elements of the wheelchair, the wheels, the motors and the batteries, except the seat (a multipurpose interface has been incorporated for mounting different types of seats according to the needs and preferences of users).

- Modular, combining various functions to facilitate its adaptation to the different problems and needs of users. Each final configuration may be designed to include only the devices and modules needed to operate the desired functions without this affecting the overall operation of the wheelchair.

- Adaptable, this design enabling the gradual incorporation of new functions.

NOA is amongst the state-of-the-art range of wheelchairs with additional functions which go beyond the mere transport of users and aimed at facilitating the activities of their daily lives.

One of the main ideas proposed is that of wheelchair be an interior-exterior one, overcoming the contradictory specifications to date whereby, on the one hand, a wheelchair is small sized (width-length) in order to pass through doorways, travel in lifts or have a small turning circle, etc, and, on the other, have good stability, a good grip on the floor and a certain ability to overcome obstacles (mainly edges), when used outside. In general, users of motorised wheelchairs also have a manual wheelchair for use in interiors, given its greater manoeuvrability. The characteristics of the new wheelchair enable users to operate a single machine in all the ambits of their daily lives.

The design challenge was met by developing an extension mechanism that enables the equipping of the NOA with variable geometry as a function of the needs of the moment, providing high manoeuvrability in its compact position in interiors and small spaces (smaller turning circle for use in lifts and restricted spaces, less width for negotiating narrow doorways and so on) and maximum stability in its extended position for use outside (greater width and greater separation between front and rear axles, while maintaining the overall length of the wheelchair).

NOA also incorporates vertical seat movement, both above and below the driving position, a feature not available in current market models. The vertical positioning of the seat above the driving position enables the users to reach high objects, gain access to counters, have conversations at different heights, etc. Being able to lower oneself from the usual driving position enables access to standard tables and desks, eat with a more suitable posture, pick objects up from the floor, etc. Moreover, the sum of both these movements enables lateral transferences at different heights to be carried out, thus reducing both the physical effort required by users or their helpers or carers as well as the need for additional devices such as transfer cranes.

NOA has the same adjustable directional tilting specification so that the user can change position without discomfort or rigidity in the joints, as well as avoid body sores, due to the fact that the points of support for the body can be changed.

The technology developed enables the integration of a single device to operate both the vertical movement of the seat as well as its directional tilting. NOA also incorporates another series of function, based on new technologies, aimed at increasing safety (automatic calls to emergency services and/or to family members for detection of falls by the user or the wheelchair overturning, detection of obstacles and anti-collision systems), manoeuvrability (semi-automatic help in the manoeuvre for negotiating edges) and facilitating control (remote control and pre-programmed itineraries).

Patents

Two patents have been taken out to protect the innovations incorporated into the design of this new wheelchair, specifically referring to the mechanisms of extension and to the lifting/directional tilting.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?hizk=I&Berri_Kod=1442

More articles from Power and Electrical Engineering:

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

nachricht Air pollution casts shadow over solar energy production
27.06.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>