Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid approach to solar power brings rewards

04.10.2007
SONS 2 scientist Dr Saif Haque of Imperial College London, is to receive the Royal Society of Chemistry's Edward Harrison Memorial Prize for his research on developing solar cells based on self-organising organic materials systems.

Haque first became involved with the ESF through its SONS 2 programme and through various networking opportunities. SONS 2 is the second round of the Self-Organised NanoStructures research for which ESF provides support.

The programme's main aim is to develop cross-disciplinary research at the interface between chemistry, materials science, nanoscience, physics and electrical engineering. Such a mix of disciplines is facilitating important developments in supramolecular science, the synthesis and control of functional assemblies, macromolecules, branching compounds known as dendrimers, liquid crystals, tailor-made polymers and inorganic nanoparticles, all of which requires input from very disparate fields.

The award-winning work being carried out in Haque's laboratory has already led to the development of organised supramolecular assemblies that have a 25% greater efficiency in experimental solar cell technology than conventional approaches using non-supramolecular components, and he is enthusiastic about how support through SONS2 is enabling this research to move forward rapidly.

"The funding from ESF and networking is important as it encourages and enables collaboration between different European research groups," he says. Such networking is also being facilitated by the ESF through its ORGANISOLAR scheme, adds Haque, this scheme is aimed at advancing research into organic photovoltaic materials by bringing together diverse, world-leading groups from across Europe together.

Such cutting edge work, of course, wins awards, and this year Haque receives the Edward Harrison Memorial Prize, a cash award of £500 pounds (about €700) together with a medal. "From a personal viewpoint I am delighted to be receiving this award," he says, "It is great to have your research recognised by such a prestigious award." He adds that, "From a general perspective, the award also serves to highlight solar photovoltaic research, which is becoming an important issue."

Indeed, alternatives to fossil fuel electricity sources are urgently needed, both for mitigation of climate change and future electricity supply. "Photovoltaic solar, the direct conversion of sunlight into electricity, is, "Haque says, "expected to play a significant role in future energy production."

He points out that nanostructured molecular electronic materials are particularly attractive for the development of new and efficient solar cells. However, there is quite some considerable way to go yet, which is why ESF's Self-Organised Hybrid Devices (SOYHD) project of which Haque is principal investigator within the SONS 2 scheme is so important. "A great amount of research and development is required before we can realise the goal of viable solar energy using inexpensive organic materials," Haque says.

"It is widely accepted that a key challenge to the design and development of molecular electronic devices such as solar cells is the ability to control materials structure at nanometre-length scale," Haque explains, "The application of supramolecular self-organising functional materials enables better control of materials structure at the nanometre length-scale." Haque and his colleagues are using a diverse range of skills to surmount these technical obstacles and so allow them to successfully achieve the aims of the SOHYD programme and to mature solar cell technology.

"A key requirement for the successful implementation of such materials in devices is the development of quantitative structure-function property relationships which enable the rational design of supramolecular materials for electronic device applications," he says, "It is also important to obtain a better understanding of the structure and function of such materials in the solid state"

The fact that the emerging technology is working with hybrid - both inorganic and organic semiconducting components together - as opposed to focusing on one or the other could lead to lead to success sooner. "The utilisation of such hybrid materials in molecular devices can, in principle, lead to high-performance devices that exhibit the superior optical and electrical properties of inorganic materials and the functional diversity and flexibility of organic compounds." It is this power and flexibility that means hybrid inorganic-organic devices are currently the subject of keen interest from both academic and industrial communities.

Sofia Valleley
EUROCORES Communications Coordinator
European Science Foundation
1, quai Lezay Marnésia
67000 Strasbourg
Tel: 0033 388 76 21 49
e-mail: svalleley@esf.org

Sofia Valleley | European Science Foundation
Further information:
http://www3.imperial.ac.uk/people/s.a.haque
http://www.esf.org/sons2
http://www.esf.org/organisolar

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>