Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid approach to solar power brings rewards

04.10.2007
SONS 2 scientist Dr Saif Haque of Imperial College London, is to receive the Royal Society of Chemistry's Edward Harrison Memorial Prize for his research on developing solar cells based on self-organising organic materials systems.

Haque first became involved with the ESF through its SONS 2 programme and through various networking opportunities. SONS 2 is the second round of the Self-Organised NanoStructures research for which ESF provides support.

The programme's main aim is to develop cross-disciplinary research at the interface between chemistry, materials science, nanoscience, physics and electrical engineering. Such a mix of disciplines is facilitating important developments in supramolecular science, the synthesis and control of functional assemblies, macromolecules, branching compounds known as dendrimers, liquid crystals, tailor-made polymers and inorganic nanoparticles, all of which requires input from very disparate fields.

The award-winning work being carried out in Haque's laboratory has already led to the development of organised supramolecular assemblies that have a 25% greater efficiency in experimental solar cell technology than conventional approaches using non-supramolecular components, and he is enthusiastic about how support through SONS2 is enabling this research to move forward rapidly.

"The funding from ESF and networking is important as it encourages and enables collaboration between different European research groups," he says. Such networking is also being facilitated by the ESF through its ORGANISOLAR scheme, adds Haque, this scheme is aimed at advancing research into organic photovoltaic materials by bringing together diverse, world-leading groups from across Europe together.

Such cutting edge work, of course, wins awards, and this year Haque receives the Edward Harrison Memorial Prize, a cash award of £500 pounds (about €700) together with a medal. "From a personal viewpoint I am delighted to be receiving this award," he says, "It is great to have your research recognised by such a prestigious award." He adds that, "From a general perspective, the award also serves to highlight solar photovoltaic research, which is becoming an important issue."

Indeed, alternatives to fossil fuel electricity sources are urgently needed, both for mitigation of climate change and future electricity supply. "Photovoltaic solar, the direct conversion of sunlight into electricity, is, "Haque says, "expected to play a significant role in future energy production."

He points out that nanostructured molecular electronic materials are particularly attractive for the development of new and efficient solar cells. However, there is quite some considerable way to go yet, which is why ESF's Self-Organised Hybrid Devices (SOYHD) project of which Haque is principal investigator within the SONS 2 scheme is so important. "A great amount of research and development is required before we can realise the goal of viable solar energy using inexpensive organic materials," Haque says.

"It is widely accepted that a key challenge to the design and development of molecular electronic devices such as solar cells is the ability to control materials structure at nanometre-length scale," Haque explains, "The application of supramolecular self-organising functional materials enables better control of materials structure at the nanometre length-scale." Haque and his colleagues are using a diverse range of skills to surmount these technical obstacles and so allow them to successfully achieve the aims of the SOHYD programme and to mature solar cell technology.

"A key requirement for the successful implementation of such materials in devices is the development of quantitative structure-function property relationships which enable the rational design of supramolecular materials for electronic device applications," he says, "It is also important to obtain a better understanding of the structure and function of such materials in the solid state"

The fact that the emerging technology is working with hybrid - both inorganic and organic semiconducting components together - as opposed to focusing on one or the other could lead to lead to success sooner. "The utilisation of such hybrid materials in molecular devices can, in principle, lead to high-performance devices that exhibit the superior optical and electrical properties of inorganic materials and the functional diversity and flexibility of organic compounds." It is this power and flexibility that means hybrid inorganic-organic devices are currently the subject of keen interest from both academic and industrial communities.

Sofia Valleley
EUROCORES Communications Coordinator
European Science Foundation
1, quai Lezay Marnésia
67000 Strasbourg
Tel: 0033 388 76 21 49
e-mail: svalleley@esf.org

Sofia Valleley | European Science Foundation
Further information:
http://www3.imperial.ac.uk/people/s.a.haque
http://www.esf.org/sons2
http://www.esf.org/organisolar

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>