Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid approach to solar power brings rewards

04.10.2007
SONS 2 scientist Dr Saif Haque of Imperial College London, is to receive the Royal Society of Chemistry's Edward Harrison Memorial Prize for his research on developing solar cells based on self-organising organic materials systems.

Haque first became involved with the ESF through its SONS 2 programme and through various networking opportunities. SONS 2 is the second round of the Self-Organised NanoStructures research for which ESF provides support.

The programme's main aim is to develop cross-disciplinary research at the interface between chemistry, materials science, nanoscience, physics and electrical engineering. Such a mix of disciplines is facilitating important developments in supramolecular science, the synthesis and control of functional assemblies, macromolecules, branching compounds known as dendrimers, liquid crystals, tailor-made polymers and inorganic nanoparticles, all of which requires input from very disparate fields.

The award-winning work being carried out in Haque's laboratory has already led to the development of organised supramolecular assemblies that have a 25% greater efficiency in experimental solar cell technology than conventional approaches using non-supramolecular components, and he is enthusiastic about how support through SONS2 is enabling this research to move forward rapidly.

"The funding from ESF and networking is important as it encourages and enables collaboration between different European research groups," he says. Such networking is also being facilitated by the ESF through its ORGANISOLAR scheme, adds Haque, this scheme is aimed at advancing research into organic photovoltaic materials by bringing together diverse, world-leading groups from across Europe together.

Such cutting edge work, of course, wins awards, and this year Haque receives the Edward Harrison Memorial Prize, a cash award of £500 pounds (about €700) together with a medal. "From a personal viewpoint I am delighted to be receiving this award," he says, "It is great to have your research recognised by such a prestigious award." He adds that, "From a general perspective, the award also serves to highlight solar photovoltaic research, which is becoming an important issue."

Indeed, alternatives to fossil fuel electricity sources are urgently needed, both for mitigation of climate change and future electricity supply. "Photovoltaic solar, the direct conversion of sunlight into electricity, is, "Haque says, "expected to play a significant role in future energy production."

He points out that nanostructured molecular electronic materials are particularly attractive for the development of new and efficient solar cells. However, there is quite some considerable way to go yet, which is why ESF's Self-Organised Hybrid Devices (SOYHD) project of which Haque is principal investigator within the SONS 2 scheme is so important. "A great amount of research and development is required before we can realise the goal of viable solar energy using inexpensive organic materials," Haque says.

"It is widely accepted that a key challenge to the design and development of molecular electronic devices such as solar cells is the ability to control materials structure at nanometre-length scale," Haque explains, "The application of supramolecular self-organising functional materials enables better control of materials structure at the nanometre length-scale." Haque and his colleagues are using a diverse range of skills to surmount these technical obstacles and so allow them to successfully achieve the aims of the SOHYD programme and to mature solar cell technology.

"A key requirement for the successful implementation of such materials in devices is the development of quantitative structure-function property relationships which enable the rational design of supramolecular materials for electronic device applications," he says, "It is also important to obtain a better understanding of the structure and function of such materials in the solid state"

The fact that the emerging technology is working with hybrid - both inorganic and organic semiconducting components together - as opposed to focusing on one or the other could lead to lead to success sooner. "The utilisation of such hybrid materials in molecular devices can, in principle, lead to high-performance devices that exhibit the superior optical and electrical properties of inorganic materials and the functional diversity and flexibility of organic compounds." It is this power and flexibility that means hybrid inorganic-organic devices are currently the subject of keen interest from both academic and industrial communities.

Sofia Valleley
EUROCORES Communications Coordinator
European Science Foundation
1, quai Lezay Marnésia
67000 Strasbourg
Tel: 0033 388 76 21 49
e-mail: svalleley@esf.org

Sofia Valleley | European Science Foundation
Further information:
http://www3.imperial.ac.uk/people/s.a.haque
http://www.esf.org/sons2
http://www.esf.org/organisolar

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>