Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature Imitated in Permanent CO2 Storage Project

01.10.2007
Icelandic, American, and French scientists launched today a project aimed at storing CO2 in Iceland´s lavas by injecting the green-house gas into basaltic bedrock where literally turns to stone.

Carbon dioxide turning into calcite is a well known natural process in volcanic areas and now the scientists of the University of Iceland, Columbia University and the CNRS in Toulouse are developing methods to imitate and speed up this transformation of the gas that is the prevalent contributor to global warming. The project´s implications for the fight against global warming are considerable, since basaltic bedrock susceptive of CO2 injections are widely found on the planet.

Reykjavik Energy, a global leader in geothermal energy, is the main sponsor of the project. The company´s facilities at the Hengill geothermal area, where a 300MW geothermal power plant is under construction, are an ideal site for the multinational scientific project.

Present when contracts on scientific and financial aspects of the project were signed, were Iceland´s President, Mr. Olafur Ragnar Grimsson, and Minister for the Environment, Thorunn Sveinbjarnardottir. Appropriately, both officials had just arrived from New York, where they attended the UN Secretary General´s summit on climate change.

Injecting CO2 at carefully selected geological sites with large potential storage capacity can be a long lasting and environmentally benign storage solution. To date CO2 is stored as gas in association with major gas production facilities such as Sleipner in the North Sea operated by Statoil and In Salah in Algeria operated by Sonatrack, BP and Statoil. The uniqueness of the Icelandic project is that whereas these other projects store CO2 mainly in a gas form, where it could potentially leak back into the atmosphere, the current project seeks to store CO2 by creating calcite in the subsurface. Calcite, a major component of limestone, is a common and stable mineral in the Earth is known to persist for tens of millions of years or more.

The research will be a combined program consisting of field scale injection of CO2 at Hellisheidi, laboratory based experiments, large scale plug-flow experiments, study of natural CO2 waters as natural analogue and state of the art geochemical modeling.

Why basalt and why Iceland?

Basaltic rocks are one of the most reactive rock types of the Earth´s crust. Basaltic rocks contain reactive minerals and glasses with high potential for CO2 sequestration. Basaltic rocks are common on the Earth´s surface, for example the continental flood basalts of Siberia, Deccan plateau of western India, Columbia River basalt in north-western United States, volcanic islands like Hawaii and Iceland and the oceanic ridges. More than 90% of Iceland is made of basalt.

Project consortium

The consortium was launched by Sigurdur Gislason of University of Iceland, Einar Gunnlaugsson of Reykjavik Energy, Eric Oelkers of the CNRS in Toulouse and Wally Broecker of Columbia University in N.Y. with the combined goal of creating solutions for the global CO2 problem and creating the human capital to address these problems in the future. Reykjavik Energy, one of the world´s leading companies in harnessing geothermal energy, will provide the infrastructure of its geothermal fields at Hellisheidi, and create a natural laboratory for the research. The area has been extensively studied.

The research will be lead by an international group of expert scientists including Juerg Matter and Domenik Wolff-Boenisch and consist of a combined program consisting of field scale injection of CO2 at Hellisheidi, laboratory based experiments, large scale plug-flow experiments, study of natural CO2 waters as natural analogue and state of the art geochemical modeling. The goal is to generate innovative solutions to safe permanent CO2 storage that can be used throughout the world.

Natural processes

The process, where CO2 is released from solidifying magma, reacts with calcium from the basalt and forms calcite, occurs naturally and the mineral is stable for thousands of years in geothermal systems. (Figure 1). Chemical weathering of basalts at the surface of the Earth is another example of carbon fixation in nature. The proposed experiment will aim at accelerating these natural processes.

The project at Hellisheidi

A mixture of water and steam is harnessed from 2000 m deep wells at Hellisheidi geothermal power plant. The steam contains geothermal gases, i.e. CO2. It is planned to dissolve the CO2 from the plant in water at elevated pressure and then inject it through wells down to 400-800 m, just outside the boundary of the geothermal system.

Contact:
Holmfridur Sigurdardottir
Project manager
Holmfridur.Sigurdardottir@or.is
+ 354 516 6000

| Hugin directnews
Further information:
http://www.or.is
http://hugin.info/138185/R/1156978/223423.pdf

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>