Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature Imitated in Permanent CO2 Storage Project

01.10.2007
Icelandic, American, and French scientists launched today a project aimed at storing CO2 in Iceland´s lavas by injecting the green-house gas into basaltic bedrock where literally turns to stone.

Carbon dioxide turning into calcite is a well known natural process in volcanic areas and now the scientists of the University of Iceland, Columbia University and the CNRS in Toulouse are developing methods to imitate and speed up this transformation of the gas that is the prevalent contributor to global warming. The project´s implications for the fight against global warming are considerable, since basaltic bedrock susceptive of CO2 injections are widely found on the planet.

Reykjavik Energy, a global leader in geothermal energy, is the main sponsor of the project. The company´s facilities at the Hengill geothermal area, where a 300MW geothermal power plant is under construction, are an ideal site for the multinational scientific project.

Present when contracts on scientific and financial aspects of the project were signed, were Iceland´s President, Mr. Olafur Ragnar Grimsson, and Minister for the Environment, Thorunn Sveinbjarnardottir. Appropriately, both officials had just arrived from New York, where they attended the UN Secretary General´s summit on climate change.

Injecting CO2 at carefully selected geological sites with large potential storage capacity can be a long lasting and environmentally benign storage solution. To date CO2 is stored as gas in association with major gas production facilities such as Sleipner in the North Sea operated by Statoil and In Salah in Algeria operated by Sonatrack, BP and Statoil. The uniqueness of the Icelandic project is that whereas these other projects store CO2 mainly in a gas form, where it could potentially leak back into the atmosphere, the current project seeks to store CO2 by creating calcite in the subsurface. Calcite, a major component of limestone, is a common and stable mineral in the Earth is known to persist for tens of millions of years or more.

The research will be a combined program consisting of field scale injection of CO2 at Hellisheidi, laboratory based experiments, large scale plug-flow experiments, study of natural CO2 waters as natural analogue and state of the art geochemical modeling.

Why basalt and why Iceland?

Basaltic rocks are one of the most reactive rock types of the Earth´s crust. Basaltic rocks contain reactive minerals and glasses with high potential for CO2 sequestration. Basaltic rocks are common on the Earth´s surface, for example the continental flood basalts of Siberia, Deccan plateau of western India, Columbia River basalt in north-western United States, volcanic islands like Hawaii and Iceland and the oceanic ridges. More than 90% of Iceland is made of basalt.

Project consortium

The consortium was launched by Sigurdur Gislason of University of Iceland, Einar Gunnlaugsson of Reykjavik Energy, Eric Oelkers of the CNRS in Toulouse and Wally Broecker of Columbia University in N.Y. with the combined goal of creating solutions for the global CO2 problem and creating the human capital to address these problems in the future. Reykjavik Energy, one of the world´s leading companies in harnessing geothermal energy, will provide the infrastructure of its geothermal fields at Hellisheidi, and create a natural laboratory for the research. The area has been extensively studied.

The research will be lead by an international group of expert scientists including Juerg Matter and Domenik Wolff-Boenisch and consist of a combined program consisting of field scale injection of CO2 at Hellisheidi, laboratory based experiments, large scale plug-flow experiments, study of natural CO2 waters as natural analogue and state of the art geochemical modeling. The goal is to generate innovative solutions to safe permanent CO2 storage that can be used throughout the world.

Natural processes

The process, where CO2 is released from solidifying magma, reacts with calcium from the basalt and forms calcite, occurs naturally and the mineral is stable for thousands of years in geothermal systems. (Figure 1). Chemical weathering of basalts at the surface of the Earth is another example of carbon fixation in nature. The proposed experiment will aim at accelerating these natural processes.

The project at Hellisheidi

A mixture of water and steam is harnessed from 2000 m deep wells at Hellisheidi geothermal power plant. The steam contains geothermal gases, i.e. CO2. It is planned to dissolve the CO2 from the plant in water at elevated pressure and then inject it through wells down to 400-800 m, just outside the boundary of the geothermal system.

Contact:
Holmfridur Sigurdardottir
Project manager
Holmfridur.Sigurdardottir@or.is
+ 354 516 6000

| Hugin directnews
Further information:
http://www.or.is
http://hugin.info/138185/R/1156978/223423.pdf

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>