Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A POX on syn

12.09.2007
A way to convert natural gas into raw materials for the chemical industry and generate power as a by-product could lead to more environmental benign manufacturing processes.

Making synthesis gas - a blend of hydrogen and carbon monoxide - is a key step in turning natural gas or biomass into bulk chemicals, such as acetic acid, methanol, oxygenated alcohols, isocyanates, and ammonia, which are the feedstock of the global chemical industry. Synthesis gas can also be converted into synthetic diesel fuel. In the conventional process of synthesis gas production, a catalyst and heat are required, which itself requires energy.

Bogdan Albrecht of Daf Trucks N.V. and his colleagues suggest that an alternative heat generating reaction that uses steam and pure oxygen to convert methane into synthesis gas would be far more efficient. The synthesis gas produced would emerge from a POX (partial oxidation) reactor at high temperature and pressure and could be used to drive a gas turbine for power generation.

The researchers have carried out an analysis of the various approaches to producing synthesis gas. The conventional method uses more energy than is released but produces relatively large amounts of synthesis gas. In contrast, two approaches POX, and Autothermal Reforming (ATR) use less energy but produce slightly less synthesis gas. However, the synthesis gas produced by POX is at a much higher temperature and pressure than that from either of the other two methods and so a POX plant can deliver ten times more power and has much lower exergy losses than any other approach. Exergy is the maximum amount of work that can be extracted from a system.

The team explain how this excess power can be used to drive a gas separation system for feeding the raw materials into the synthesis gas plant. They also point out that their prototype design is far more compact than steam turbine systems currently used in synthesis gas production.

Jim Corlett | alfa
Further information:
http://www.inderscience.com

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>