Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A POX on syn

12.09.2007
A way to convert natural gas into raw materials for the chemical industry and generate power as a by-product could lead to more environmental benign manufacturing processes.

Making synthesis gas - a blend of hydrogen and carbon monoxide - is a key step in turning natural gas or biomass into bulk chemicals, such as acetic acid, methanol, oxygenated alcohols, isocyanates, and ammonia, which are the feedstock of the global chemical industry. Synthesis gas can also be converted into synthetic diesel fuel. In the conventional process of synthesis gas production, a catalyst and heat are required, which itself requires energy.

Bogdan Albrecht of Daf Trucks N.V. and his colleagues suggest that an alternative heat generating reaction that uses steam and pure oxygen to convert methane into synthesis gas would be far more efficient. The synthesis gas produced would emerge from a POX (partial oxidation) reactor at high temperature and pressure and could be used to drive a gas turbine for power generation.

The researchers have carried out an analysis of the various approaches to producing synthesis gas. The conventional method uses more energy than is released but produces relatively large amounts of synthesis gas. In contrast, two approaches POX, and Autothermal Reforming (ATR) use less energy but produce slightly less synthesis gas. However, the synthesis gas produced by POX is at a much higher temperature and pressure than that from either of the other two methods and so a POX plant can deliver ten times more power and has much lower exergy losses than any other approach. Exergy is the maximum amount of work that can be extracted from a system.

The team explain how this excess power can be used to drive a gas separation system for feeding the raw materials into the synthesis gas plant. They also point out that their prototype design is far more compact than steam turbine systems currently used in synthesis gas production.

Jim Corlett | alfa
Further information:
http://www.inderscience.com

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>