Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heraeus Noblelight at PV show in Mailand in September 2007

Infrared Emitter with a New QRC Reflector
  • Infrared Emitters transfer large amounts of energy in a contact-free manner.
  • Infrared radiation is targeted by means of reflectors
  • Heraeus Noblelight is showing a new integrated reflector at the PV Expo in Mailand in September

Many sensitive heating processes run faster, more efficiently and somewhat more stable when infrared emitters with the new QRC reflector are used.

Infrared heat can be more effectively utilised by using reflectors. These save energy and valuable production space. A newly developed quartz reflector sits directly on the emitter and helps to ensure more efficient application of infrared radiation, both under vacuum and in high temperature processes. Copyright Heraeus Noblelight 2007

Comprehensive tests at Heraeus, and also on site at the first users, show that the temperature stability of the new reflector ensures a uniform process. The new QRC (quartz reflective coating) reflector consists of high purity synthetic quartz material, with which the quartz glass tube is coated.

Heraeus Noblelight is showing infrared emitters with the new integral reflector at the “22nd European Photovoltaic Solar Energy Conference and Exhibition” in Mailand at the beginning of September.

Solar cells aim to make optimum use of solar energy. An anti-reflective coating provides for a significantly better absorption performance for solar cells. This coating is carried out in vacuum and at high temperatures.

It has been shown that such high temperature processes can be carried out in a significantly more stable fashion using infrared emitters featuring the new QRC reflectors, as process parameters such as temperature or the heating time can be better maintained. This increases the energy efficiency of a system.

Unlike other quartz reflectors, the QRC reflector is not an externally applied quartz shell but is a coating of synthetic quartz glass applied directly to the infrared emitter. As a result, the emitter is very compact and requires very little working space. With the QRC reflector, Heraeus Noblelight has succeeded in creating, for the first time, a reflector for vacuum applications which sits directly on the emitter.

The synthetic quartz material is of high purity and has a reflectivity which is not quite as effective as a gold coating but is better than a stainless steel reflector. The quartz reflector has very good heat resistance up to around 1000ºC and is also resistant to acids, lyes and other aggressive substances. Consequently, emitters with this reflector can be used even in manufacturing processes where the manufacturing plant requires regular cleaning with corrosive cleaning agents.

Visitors to the Heraeus stand at the PV exhibition in Mailand could see an infrared emitter with the new reflector of opaque quartz glass in operation. A module specially built for the exhibition demonstrated how the reflector allows heat to be focused directly onto the product and gave some indication of how energy can be saved with the improved process.

Infrared emitters are compact and transfer large amounts of energy without the need of a contact medium. This makes thermal processes in vacuum possible and helps in the efficient use of valuable production space. In contrast to metal tube emitters, which conventionally have often been used under vacuum conditions, infrared emitters from Heraeus Noblelight have a higher power density and are significantly more responsive. As a result, heating operations are performed faster and in a more controlled fashion.

Heraeus Noblelight GmbH, with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2006, Heraeus Noblelight had an annual turnover of 88 Million € and employed 651 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

The precious metal and technology organisation Heraeus, is a worldwide, family-owned organisation, active in the fields of precious metals, dental materials, sensors, quartz glass and specialist light sources. With a turnover of over 10 milliard € and with more than 11,000 employees worldwide in more than 100 companies, Heraeus has been acknowledged worldwide for more than 155 years as a precious metals and materials specialist.
Reader Inquiries:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
Press Inquiries:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH
Phone +49 6181/35-8547
Fax +49 6181/35-16 8547

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:

More articles from Power and Electrical Engineering:

nachricht Prototype device for measuring graphene-based electromagnetic radiation created
28.10.2016 | Lomonosov Moscow State University

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>