Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heraeus Noblelight at PV show in Mailand in September 2007

06.09.2007
Infrared Emitter with a New QRC Reflector
  • Infrared Emitters transfer large amounts of energy in a contact-free manner.
  • Infrared radiation is targeted by means of reflectors
  • Heraeus Noblelight is showing a new integrated reflector at the PV Expo in Mailand in September

Many sensitive heating processes run faster, more efficiently and somewhat more stable when infrared emitters with the new QRC reflector are used.



Infrared heat can be more effectively utilised by using reflectors. These save energy and valuable production space. A newly developed quartz reflector sits directly on the emitter and helps to ensure more efficient application of infrared radiation, both under vacuum and in high temperature processes. Copyright Heraeus Noblelight 2007


Comprehensive tests at Heraeus, and also on site at the first users, show that the temperature stability of the new reflector ensures a uniform process. The new QRC (quartz reflective coating) reflector consists of high purity synthetic quartz material, with which the quartz glass tube is coated.

Heraeus Noblelight is showing infrared emitters with the new integral reflector at the “22nd European Photovoltaic Solar Energy Conference and Exhibition” in Mailand at the beginning of September.

Solar cells aim to make optimum use of solar energy. An anti-reflective coating provides for a significantly better absorption performance for solar cells. This coating is carried out in vacuum and at high temperatures.

It has been shown that such high temperature processes can be carried out in a significantly more stable fashion using infrared emitters featuring the new QRC reflectors, as process parameters such as temperature or the heating time can be better maintained. This increases the energy efficiency of a system.

Unlike other quartz reflectors, the QRC reflector is not an externally applied quartz shell but is a coating of synthetic quartz glass applied directly to the infrared emitter. As a result, the emitter is very compact and requires very little working space. With the QRC reflector, Heraeus Noblelight has succeeded in creating, for the first time, a reflector for vacuum applications which sits directly on the emitter.

The synthetic quartz material is of high purity and has a reflectivity which is not quite as effective as a gold coating but is better than a stainless steel reflector. The quartz reflector has very good heat resistance up to around 1000ºC and is also resistant to acids, lyes and other aggressive substances. Consequently, emitters with this reflector can be used even in manufacturing processes where the manufacturing plant requires regular cleaning with corrosive cleaning agents.

Visitors to the Heraeus stand at the PV exhibition in Mailand could see an infrared emitter with the new reflector of opaque quartz glass in operation. A module specially built for the exhibition demonstrated how the reflector allows heat to be focused directly onto the product and gave some indication of how energy can be saved with the improved process.

Infrared emitters are compact and transfer large amounts of energy without the need of a contact medium. This makes thermal processes in vacuum possible and helps in the efficient use of valuable production space. In contrast to metal tube emitters, which conventionally have often been used under vacuum conditions, infrared emitters from Heraeus Noblelight have a higher power density and are significantly more responsive. As a result, heating operations are performed faster and in a more controlled fashion.

Heraeus Noblelight GmbH, with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2006, Heraeus Noblelight had an annual turnover of 88 Million € and employed 651 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

The precious metal and technology organisation Heraeus, is a worldwide, family-owned organisation, active in the fields of precious metals, dental materials, sensors, quartz glass and specialist light sources. With a turnover of over 10 milliard € and with more than 11,000 employees worldwide in more than 100 companies, Heraeus has been acknowledged worldwide for more than 155 years as a precious metals and materials specialist.
Reader Inquiries:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press Inquiries:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH
Phone +49 6181/35-8547
Fax +49 6181/35-16 8547
marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>