Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New catalysts may create more, cheaper hydrogen

A new class of catalysts created at the U.S. Department of Energy's Argonne National Laboratory may help scientists and engineers overcome some of the hurdles that have inhibited the production of hydrogen for use in fuel cells.

Argonne chemist Michael Krumpelt and his colleagues in Argonne's Chemical Engineering Division used "single-site" catalysts based on ceria or lanthanum chromite doped with either platinum or ruthenium to boost hydrogen production at lower temperatures during reforming. "We've made significant progress in bringing the rate of reaction to where applications require it to be," Krumpelt said.

Most hydrogen produced industrially is created through steam reforming. In this process, a nickel-based catalyst is used to react natural gas with steam to produce pure hydrogen and carbon dioxide.

These nickel catalysts typically consist of metal grains tens of thousands of atoms in diameter that speckle the surface of metal oxide substrates. Conversely, the new catalysts that Krumpelt developed consist of single atomic sites imbedded in an oxide matrix. The difference is akin to that between a yard strewn with several large snowballs and one covered by a dusting of flakes. Because some reforming processes tend to clog much of the larger catalysts with carbon or sulfur byproducts, smaller catalysts process the fuel much more efficiently and can produce more hydrogen at lower temperatures.

Krumpelt's initial experiments with single-site catalysts used platinum in gadolinium-doped ceria that, though it started to reform hydrocarbons at temperatures as low as 450 degrees Celsius, became unstable at higher temperatures. As he searched for more robust materials that would support the oxidation-reduction reaction cycle at the heart of hydrocarbon reforming, Krumpelt found that if he used ruthenium – which costs only one percent as much as platinum – in a perovskite matrix, then he could initiate reforming at 450 degrees Celsius and still have good thermal stability.

The use of the LaCrRuO3 perovskite offers an additional advantage over traditional catalysts. While sulfur species in the fuel degraded the traditional nickel, and to a lesser extent even the single-site platinum catalysts, the crystalline structure of the perovskite lattice acts as a stable shell that protects the ruthenium catalyst from deactivation by sulfur.

Krumpelt will present an invited keynote talk describing these results during the 234th national meeting of the American Chemical Society in Boston from August 18 to 23. Seventeen other Argonne researchers will also present their research.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or at Argonne.

Sylvia Carson | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>