Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pellets of power designed to deliver hydrogen for tomorrow's vehicles

23.08.2007
New insights to be shared on use of solid ammonia borane for hydrogen storage

Hydrogen may prove to be the fuel of the future in powering the effi cient, eco-friendly fuel cell vehicles of tomorrow. Developing a method to safely store, dispense and easily “refuel” the vehicle’s storage material with hydrogen has baffl ed researchers for years. However, a new and attractive storage medium being developed by Pacific Northwest National Laboratory scientists may provide the “power of pellets” to fuel future transportation needs.

The Department of Energy’s Chemical Hydrogen Storage Center of Excellence is investigating a hydrogen storage medium that holds promise in meeting long-term targets for transportation use. As part of the center, PNNL scientists are using solid ammonia borane, or AB, compressed into small pellets to serve as a hydrogen storage material. Each milliliter of AB weighs about three-quarters of a gram and harbors up to 1.8 liters of hydrogen. Researchers expect that a fuel system using small AB pellets will occupy less space and be lighter in weight than systems using pressurized hydrogen gas, thus enabling fuel cell vehicles to have room, range and performance comparable to today’s automobiles.

“With this new understanding and our improved methods in working with ammonia borane,” said PNNL scientist Dave Heldebrant, “we’re making positive strides in developing a viable storage medium to provide reliable, environmentally friendly hydrogen power generation for future transportation needs.”

A small pellet of solid ammonia borane (240 mg), as shown, is capable of storing relatively large quantities of hydrogen (0.5 liter) in a very small volume.

PNNL scientists are learning to manipulate the release of hydrogen from AB at predictable rates. By varying temperature and manipulating AB feed rates to a reactor, researchers envision controlling the production of hydrogen and thus fuel cell power, much like a gas pedal regulates fuel to a car’s combustion engine. “Once hydrogen from the storage material is depleted, the AB pellets must be safely and effi ciently regenerated by way of chemical processing,” said PNNL scientist Don Camaioni. “This ‘refueling’ method requires chemically digesting or breaking down the solid spent fuel into chemicals that can be recycled back to AB with hydrogen.”

Geoff Harvey | EurekAlert!
Further information:
http://www.pnl.gov
http://www.emsl.pnl.gov

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
23.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>