Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coal and black liquor can produce energy from papermaking

22.08.2007
Adding a little coal and processing the papermaking industry's black liquor waste into synthesis gas is a better choice than burning it for heat, improves the carbon footprint of coal-to-liquid processes, and can produce a fuel versatile enough to run a cooking stove or a truck, according to a team of Penn state engineers.

"Black liquor is routinely burned in a recovery boiler," says Andre Boehman, professor of fuel science. "But it has more energy value as a synthesis gas which is then used to create other fuels."

Black liquor is a combination of lignin from the wood, the chemicals used in papermaking and water. Normally, after burning, mills extract the inorganic chemicals and recycle them. Synthesis gas or syngas can be made from a variety of organic wastes and is a combination of hydrogen and carbon monoxide. The final product looked at by the researchers is DME or dimethyl ether.

"DME could be used as a fuel for cooking in the U.S. and Japan," says Boehman. "DME has recently grown in both production and use and is replacing coal for home heating and cooking in China."

DME is building new markets in both heat producing fuel applications and transportation. In Japan and China, some demonstration diesel trucks and buses already run on DME. Volvo has a third generation experimental truck that runs on DME and other companies are also testing vehicles.

"Penn State actually had the first transit vehicle use of DME," says Boehman, who is also treasurer of the International DME Association, a nonprofit advocacy group. "A Penn State Staff Shuttle was fitted to run on the fuel and ferried faculty and staff around campus in 2002."

Graduate students carried out the research on co-processing of coal and biomass, during a class, Design Engineering for Energy and Geo-Environmental Systems, and Boehman reported the results at the 234th national meeting of the American Chemical Society, today (Aug. 20), in Boston. The students looked at the efficiency of using black liquor as the feedstock for manufacturing synthesis gas and then DME, and realized that they needed the economy of scale for the process to be really efficient and economical. The capacity of paper mills for fuel production could be expanded by co-processing coal with the black liquor.

A potential approach is to combine the black liquor with a coal slurry and process that. Paper mill processes then treated this mixture with steam and only a little oxygen to convert the organic compounds into hydrogen and carbon monoxide. These products traditionally have then been used in the Fischer Tropsch method to produce a mixed petroleum-like product that must be further refined before use. The students suggest the DME process because it is less energy intensive and produces a targeted product, DME, and while DME is a specialty fuel, its use is increasing worldwide.

Looking at a comparison of energy efficiency, the students found that gasoline and diesel fuel have the lowest energy cost to produce, but DME is not that far away in efficiency. DME is also much cleaner burning than either gasoline or diesel.

Converting black liquor and coal into DME also releases less carbon as carbon dioxide into the atmosphere than if coal alone was used to produce the fuel. Some of the carbon from these sources remains sequestered in solid form and do not add to global warming.

"Another reason we may want to co-process coal with black liquor is to stretch our coal reserve," says Boehman. "We have always known that coal reserves are finite, but now it appears we will not be able to mine all the available coal there is due to environmental concerns."

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>