Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coal and black liquor can produce energy from papermaking

22.08.2007
Adding a little coal and processing the papermaking industry's black liquor waste into synthesis gas is a better choice than burning it for heat, improves the carbon footprint of coal-to-liquid processes, and can produce a fuel versatile enough to run a cooking stove or a truck, according to a team of Penn state engineers.

"Black liquor is routinely burned in a recovery boiler," says Andre Boehman, professor of fuel science. "But it has more energy value as a synthesis gas which is then used to create other fuels."

Black liquor is a combination of lignin from the wood, the chemicals used in papermaking and water. Normally, after burning, mills extract the inorganic chemicals and recycle them. Synthesis gas or syngas can be made from a variety of organic wastes and is a combination of hydrogen and carbon monoxide. The final product looked at by the researchers is DME or dimethyl ether.

"DME could be used as a fuel for cooking in the U.S. and Japan," says Boehman. "DME has recently grown in both production and use and is replacing coal for home heating and cooking in China."

DME is building new markets in both heat producing fuel applications and transportation. In Japan and China, some demonstration diesel trucks and buses already run on DME. Volvo has a third generation experimental truck that runs on DME and other companies are also testing vehicles.

"Penn State actually had the first transit vehicle use of DME," says Boehman, who is also treasurer of the International DME Association, a nonprofit advocacy group. "A Penn State Staff Shuttle was fitted to run on the fuel and ferried faculty and staff around campus in 2002."

Graduate students carried out the research on co-processing of coal and biomass, during a class, Design Engineering for Energy and Geo-Environmental Systems, and Boehman reported the results at the 234th national meeting of the American Chemical Society, today (Aug. 20), in Boston. The students looked at the efficiency of using black liquor as the feedstock for manufacturing synthesis gas and then DME, and realized that they needed the economy of scale for the process to be really efficient and economical. The capacity of paper mills for fuel production could be expanded by co-processing coal with the black liquor.

A potential approach is to combine the black liquor with a coal slurry and process that. Paper mill processes then treated this mixture with steam and only a little oxygen to convert the organic compounds into hydrogen and carbon monoxide. These products traditionally have then been used in the Fischer Tropsch method to produce a mixed petroleum-like product that must be further refined before use. The students suggest the DME process because it is less energy intensive and produces a targeted product, DME, and while DME is a specialty fuel, its use is increasing worldwide.

Looking at a comparison of energy efficiency, the students found that gasoline and diesel fuel have the lowest energy cost to produce, but DME is not that far away in efficiency. DME is also much cleaner burning than either gasoline or diesel.

Converting black liquor and coal into DME also releases less carbon as carbon dioxide into the atmosphere than if coal alone was used to produce the fuel. Some of the carbon from these sources remains sequestered in solid form and do not add to global warming.

"Another reason we may want to co-process coal with black liquor is to stretch our coal reserve," says Boehman. "We have always known that coal reserves are finite, but now it appears we will not be able to mine all the available coal there is due to environmental concerns."

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>