Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coal-based fuels and products hit the refinery

21.08.2007
A variety of end products including jet fuel, gasoline, carbon anodes and heating oil may be possible using existing refineries and combinations of coal and refinery by-products, according to a team of Penn State researchers.

"One idea is based on the coal-to-jet fuel work that we have been doing for a long time," says Caroline E. Burgess Clifford, research associate at Penn State's Energy Institute. "Our aim is to integrate the processes and products into existing refinery structures and streams."

The coal-to-jet fuel work is in the pilot plant stage, but along with the jet fuel, the process produces other hydrocarbon products. For every eight barrels of a Jet A equivalent, the process produces a half barrel of fuel oil, one barrel of diesel and a half barrel of gasoline.

"We need to be sure that these components fit into the refinery stream that they are close enough in composition to be mixed with the components coming from crude oil," says Clifford.

So far, the researchers, including Harold Schobert, professor of fuel sciences; Maria M. Escallon and Utaiporn Suryapraphadilok, graduate students; Gareth D. Mitchell, Omer Gul, Josefa M. Griffith and Parvana Gafarova, research associates, Energy Institute, characterize the gasoline and fuel oil as fitting within the standard crude oil refinery stream. The diesel fuel is different from standard diesel fuel.

Other participants in this project tested the products in real units, including Andre Boehman, professor of fuel science and his group who tested the gasoline and diesel in engines; Bruce Miller, senior research associate and his group who tested the fuel oil in a pilot scale boiler; and Chunshan Song, director of the Energy Institute and professor of fuel science and his group who did related catalyst research.

"The produced diesel can be blended with the petroleum diesel without changing the fuel properties significantly," says Clifford. "It has not been shown to be bad or have bad effects, it is just different. We are also examining the produced jet fuel to see if it could be used as a diesel fuel, as the jet fuel has undergone extensively more processing than the other products."

The pilot plant demonstration process uses coal tar and refinery solvent blended, cleaned and treated to produce the various fractions. In another process aimed at producing jet fuel, they mix raw, clean coal with decant oil – the liquid found at the bottom after catalytic cracking – and then co-coke. Fuel-grade coke, which is a standard fuel in the steel industry, sells for about $20 a ton. This co-coking process aims to produce coke or carbon of much higher quality usable in manufacturing carbon anodes for a variety of uses. The coke used in these anodes is a much higher value than fuel coke.

"So far the process has produced really good carbon, but it contains too many residual minerals for anode use," says Clifford. "The liquid component does include jet fuel, but the liquid products are very heavy in fuel oil." The researchers report at the American Chemical Society meeting today (Aug. 20), in Boston that future work will strive to reduce impurities in the solid carbon product. Researchers will also investigate either fractionating the fuel oil component or improving the liquid yield.

Another approach to achieving liquid fuels from coal is to extract the liquids from coal using refinery liquid. This method uses light cycle oil to extract the liquid components of coal and then the liquid portion, without separation, travels on through the refinery hydrotreater. In initial bench testing, this method produced a 50 percent yield of liquids. When processed in a multistage reactor, 70 percent extraction took place. The researchers are continuing this work to reduce the amount of light cycle oil necessary, develop a method to separate liquids and solids, and scale up the process.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>