Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Think Pink to Produce "Green" Solar Energy

31.07.2007
When it comes to producing earth-friendly solar energy, pink may be the new green, according to Ohio State University researchers.

Scientists here have developed new dye-sensitized solar cells (DSSCs) that get their pink color from a mixture of red dye and white metal oxide powder in materials that capture light.

Currently, the best of these new pink materials convert light to electricity with only half the efficiency of commercially-available silicon-based solar cells -- but they do so at only one quarter of the cost, said Yiying Wu, assistant professor of chemistry at Ohio State.

And Wu is hoping for even better.

"We believe that one day, DSSC efficiency can reach levels comparable to any solar cell," he said. "The major advantage of DSSCs is that the cost is low. That is why DSSCs are so interesting to us, and so important."

Pink is a typical color for DSSCs. Most use dyes containing ruthenium, which has a red color; the metal oxide powder that turns the mix pink is most often titanium oxide or zinc oxide, which are both whitish in color. But Wu's materials are novel in that he's using more complex metals and exploring different particle shapes to boost the amount of electricity produced.

In a recent issue of the Journal of the American Chemical Society (JACS), he and his team report that they have made a new DSSC material using zinc stannate.

This is the first time that researchers have made a DSSC from anything other than a simple oxide. Wu and his colleagues chose zinc stannate because it belongs to a class of more complex oxides with tunable properties.

"This opens up new possibilities for how scientists may tailor the properties of DSSCs in the future," he said.

So why are DSSCs pink, and not blue like silicon-based solar cells?

Those traditional solar cells look blue because of an anti-reflective coating, he explained. The coating boosts absorption of green light, which is the strongest in the solar spectrum. Wu's materials don't have that anti-reflective coating.

Color determines the wavelength of light that a solar cell can capture, so adjusting the color lets scientists optimize particular properties in how the device will function. So far in the development of DSSCs, scientists have gotten the best performance from red ruthenium dye.

"If you want to achieve the best efficiency, you need to consider both the voltage you can achieve and the current you can achieve," Wu said. Voltage is the potential energy that the material could provide; current is the amount of charge it can transport.

"If you absorb a very broad range of wavelengths, that's going to sacrifice voltage. And if your absorption energy threshold is very high, you can achieve high voltage, but you'll sacrifice current. The idea is to find some balance."

Silicon-based solar cells have been around since the 1960s. Scientists have been working to develop DSSCs since the 1990s.

In DSSCs, dye molecules coat tiny metal oxide particles that are packed together into a thin film. The dye molecules capture light energy and release electrons, and the particles act like electrical wires to carry the electrons away to an electrical circuit.

But electrons can get lost when traveling between particles. That's why Wu is working on designs that incorporate tiny nano-wires that carry electrons directly to a circuit.

Last year, he and his team published a paper in the Journal of Physical Chemistry B describing DSSCs that contained particles and nano-wires of titanium oxide. That formulation achieved 8.6 percent efficiency -- roughly half of the 15 percent efficiency typical of commercially available silicon solar cells.

In the new JACS paper, they report that a formulation with zinc stannate particles -- but no nano-wires -- achieved 3.8 percent efficiency. Now they are working to combine the two strategies, by making nano-wires from zinc stannate and other oxides.

They are also exploring the possibility of using nano-trees -- nano-wires shaped like the branches of a tree.

"We asked ourselves, what structure is best for gathering light and also transporting materials -- a tree! The leaves provide a high surface area for capturing light, and the branches transport the nutrients to the roots," Wu said. "In our DSSC design, the dye-coated particles would provide the surface area, and the nano-trees would branch out in between them, to transport the electrons."

So dye-sensitized solar cells may contain tiny pink "trees" in the future, but other colors are possible, he said. Researchers are studying new dyes and dye combinations that may work better.

Wu's coauthors on the Journal of the American Chemical Society paper included postdoctoral researcher Bing Tan, doctoral student Yanguang Li, and undergraduate student Elizabeth Toman.

This research was partially funded by the American Chemical Society's Petroleum Research Fund.

| newswise
Further information:
http://www.osu.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>