Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Think Pink to Produce "Green" Solar Energy

31.07.2007
When it comes to producing earth-friendly solar energy, pink may be the new green, according to Ohio State University researchers.

Scientists here have developed new dye-sensitized solar cells (DSSCs) that get their pink color from a mixture of red dye and white metal oxide powder in materials that capture light.

Currently, the best of these new pink materials convert light to electricity with only half the efficiency of commercially-available silicon-based solar cells -- but they do so at only one quarter of the cost, said Yiying Wu, assistant professor of chemistry at Ohio State.

And Wu is hoping for even better.

"We believe that one day, DSSC efficiency can reach levels comparable to any solar cell," he said. "The major advantage of DSSCs is that the cost is low. That is why DSSCs are so interesting to us, and so important."

Pink is a typical color for DSSCs. Most use dyes containing ruthenium, which has a red color; the metal oxide powder that turns the mix pink is most often titanium oxide or zinc oxide, which are both whitish in color. But Wu's materials are novel in that he's using more complex metals and exploring different particle shapes to boost the amount of electricity produced.

In a recent issue of the Journal of the American Chemical Society (JACS), he and his team report that they have made a new DSSC material using zinc stannate.

This is the first time that researchers have made a DSSC from anything other than a simple oxide. Wu and his colleagues chose zinc stannate because it belongs to a class of more complex oxides with tunable properties.

"This opens up new possibilities for how scientists may tailor the properties of DSSCs in the future," he said.

So why are DSSCs pink, and not blue like silicon-based solar cells?

Those traditional solar cells look blue because of an anti-reflective coating, he explained. The coating boosts absorption of green light, which is the strongest in the solar spectrum. Wu's materials don't have that anti-reflective coating.

Color determines the wavelength of light that a solar cell can capture, so adjusting the color lets scientists optimize particular properties in how the device will function. So far in the development of DSSCs, scientists have gotten the best performance from red ruthenium dye.

"If you want to achieve the best efficiency, you need to consider both the voltage you can achieve and the current you can achieve," Wu said. Voltage is the potential energy that the material could provide; current is the amount of charge it can transport.

"If you absorb a very broad range of wavelengths, that's going to sacrifice voltage. And if your absorption energy threshold is very high, you can achieve high voltage, but you'll sacrifice current. The idea is to find some balance."

Silicon-based solar cells have been around since the 1960s. Scientists have been working to develop DSSCs since the 1990s.

In DSSCs, dye molecules coat tiny metal oxide particles that are packed together into a thin film. The dye molecules capture light energy and release electrons, and the particles act like electrical wires to carry the electrons away to an electrical circuit.

But electrons can get lost when traveling between particles. That's why Wu is working on designs that incorporate tiny nano-wires that carry electrons directly to a circuit.

Last year, he and his team published a paper in the Journal of Physical Chemistry B describing DSSCs that contained particles and nano-wires of titanium oxide. That formulation achieved 8.6 percent efficiency -- roughly half of the 15 percent efficiency typical of commercially available silicon solar cells.

In the new JACS paper, they report that a formulation with zinc stannate particles -- but no nano-wires -- achieved 3.8 percent efficiency. Now they are working to combine the two strategies, by making nano-wires from zinc stannate and other oxides.

They are also exploring the possibility of using nano-trees -- nano-wires shaped like the branches of a tree.

"We asked ourselves, what structure is best for gathering light and also transporting materials -- a tree! The leaves provide a high surface area for capturing light, and the branches transport the nutrients to the roots," Wu said. "In our DSSC design, the dye-coated particles would provide the surface area, and the nano-trees would branch out in between them, to transport the electrons."

So dye-sensitized solar cells may contain tiny pink "trees" in the future, but other colors are possible, he said. Researchers are studying new dyes and dye combinations that may work better.

Wu's coauthors on the Journal of the American Chemical Society paper included postdoctoral researcher Bing Tan, doctoral student Yanguang Li, and undergraduate student Elizabeth Toman.

This research was partially funded by the American Chemical Society's Petroleum Research Fund.

| newswise
Further information:
http://www.osu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>