Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team building robotic fin for submarines

31.07.2007
Inspired by the efficient swimming motion of the bluegill sunfish, MIT researchers are building a mechanical fin that could one day propel robotic submarines.

The propeller-driven submarines, or autonomous underwater vehicles (AUVs), currently perform a variety of functions, from mapping the ocean floor to surveying shipwrecks. But the MIT team hopes to create a more maneuverable, propeller-less underwater robot better suited for military tasks such as sweeping mines and inspecting harbors-and for that they are hoping to mimic the action of the bluegill sunfish.

"If we could produce AUVs that can hover and turn and store energy and do all the things a fish does, they'll be much better than the remotely operated vehicles we have now," said James Tangorra, an MIT postdoctoral associate working on the project.

The researchers chose to copy the bluegill sunfish because of its distinctive swimming motion, which results in a constant forward thrust with no backward drag. In contrast, a human performing the breaststroke inevitably experiences drag during the recovery phase of the stroke.

Tangorra and others in the Bio-Instrumentation Systems Laboratory, led by Professor Ian Hunter of the Department of Mechanical Engineering, have broken down the fin movement of the bluegill sunfish into 19 components and analyzed which ones are critical to achieving the fish's powerful forward thrust.

"We don't want to replicate exactly what nature does," said Tangorra, who will soon be joining the faculty of Drexel University. "We want to figure out what parts are important for propulsion and copy those."

So far, the team has built several prototypes that successfully mimic the sunfish fin. They reported the successful testing of their most recent fin, which is made of a cutting-edge polymer that conducts electricity, in the June issue of the Bioinspiration & Biomimetics journal.

The latest fin is made of a thin, flexible material that conducts electricity. The fin is able to replicate two motions that the researchers identified as critical to the propulsion of the sunfish fin: the forward sweep of the fins and the simultaneous cupping of the upper and lower edges of the fin.

When an electric current is run across the base of the fin, it sweeps forward, just like a sunfish fin. By changing the direction of the electric current, the researchers can make the fin curl forward at the upper and lower edges, but it has been a challenge to make the fin sweep and curl at the same time. Strategically placing Mylar strips along the fins to restrict their movement to the desired direction has proven successful, but the team continues to seek alternative solutions.

Their first-generation fin successfully replicated the sweeping and cupping motions of the sunfish fin, but the motors that controlled the fin were too large and noisy for use in an AUV. The researchers'

new approach, using the new conducting polymer, could eliminate the need for electric motors. The material can be assembled from a solution of chemicals, giving the designers more control over its molecular structure.

"This gives us the potential to build machines or robots in a manner closer to how nature creates things," said Tangorra.

In future research, the team plans to look at other aspects of the sunfish's movement, including interactions between different fins and between fins and the fish's body. That will help engineers figure out how to best adapt nature's principles to designing robotic vehicles, Tangorra said.

"To be appropriate for AUVs, you can't just look at these as propeller replacements," he said.

This research is funded by the Office of Naval Research.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>