Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The original nanoworkout -- Helping carbon nanotubes get into shape

08.06.2007
Researchers at Rensselaer Polytechnic Institute have developed a new method of compacting carbon nanotubes into dense bundles. These tightly packed bundles are efficient conductors and could one day replace copper as the primary interconnects used on computer chips and even hasten the transition to next-generation 3-D stacked chips.

Theoretical studies show that carbon nanotubes, if packed closely enough together, should be able to outperform copper as an electrical conductor. But because of the way carbon nanotubes are grown – in sparse nanoscale “forests” where carbon molecules compete for growth-inducing catalysts – scientists have been unable to successfully grow tightly packed bundles.

James Jiam-Qiang Lu, associate professor of physics and electrical engineering at Rensselaer, together with his research associate Zhengchun Liu, decided to investigate how to “densify” carbon nanotube bundles after they are already grown. He detailed the results of the post-growth densification project on June 6 at the Institute of Electrical and Electronics Engineers’ International Interconnect Technology Conference (IITC) in Burlingame, Calif.

Lu’s team discovered that by immersing vertically grown carbon nanotube bundles into a liquid organic solvent and allowing them to dry, the nanotubes pull close together into a dense bundle. Lu attributes the densification process to capillary coalescence, which is the same physical principle that allows moisture to move up a piece of tissue paper that is dipped into water.

The process boosts the density of these carbon nanotube bundles by five to 25 times. The higher the density, the better they can conduct electricity, Lu said. Several factors, including nanotube height, diameter, and spacing, affect the resulting density, Liu added. How the nanotubes are grown is also an important factor that impacts the resulting shape of the densified bundles.

Images of the experiment are more striking than any “before and after” photos of the latest fad diet. In one instance, Liu started with a carbon nanotube bundle 500 micrometers in diameter, shaped somewhat like a marshmallow, and dipped it into a bath of isopropyl alcohol. As the alcohol dried and evaporated, capillary forces drew the nanotubes closer together. Van Der Waals forces, the same molecular bonds that boost the adhesion of millions of setae on gecko toes and help the lizard defy gravity, ensure the nanotubes retain their tightly packed form.

The resulting bundle shrunk to a diameter of 100 micrometers, with a 25-fold increase in density. Instead of a marshmallow, it looked more like a carpenter’s nail.

“It’s a significant and critical step toward the realization of carbon nanotube interconnects with better performance than copper,” Lu said of his research findings. “But there’s still a lot of work to do before this technology can be integrated into industrial applications.”

Despite his initial successes, Lu said the density results obtained are not ideal and carbon nanotubes would have to be further compacted before they can outperform copper as a conductor. A close-up photo, taken using a scanning electron microscope, reveals there are still large empty spaces between densified nanotubes. The research team is exploring various methods to achieve ever-higher density and higher quality of carbon nanotube bundles, he said.

Lu is confident that these densified carbon nanotubes, with their high conductivity, ability to carry high current density, and resistance to electromigration, will be key to the development of 3-D computer chips. Chips used today can only shrink so much smaller, as their flat surface must have enough room to accommodate scores of different components. But the semiconductor industry and academia are looking at ways to layer chip components into a vertical stack, which could dramatically shrink the size of the overall chip.

Densified carbon nanotubes, with their ends trimmed and polished, can be the basic building blocks for interconnects that would link the stacked layers of a 3-D computer chip, Lu said.

“Carbon nanotubes are one of the most promising materials for interconnects in 3-D integration,” he said. Other potential applications of the densified nanotubes are high surface area electrodes for supercapacitors, fuel cell electrodes for hydrogen storage, heat dissipation materials for thermal conductors, and other situations that require high electrical, thermal, or mechanical performance.

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu/research/magazine/spring05/chips.html

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>