Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polarisation technology to enable tripwire detection

08.06.2007
A sensor will be developed that can remotely detect command and trip wires attached to explosive devices following the award of an £800,000 contract by the UK Ministry of Defence to QinetiQ. The 18 month research contract aims to develop a highly sensitive electro optic sensor that is capable of detecting command and trip wires of less than a millimetre in diameter that are used to detonate conventional munitions, mines and many improvised explosive devices (IEDs).

The project aims to identify the best means of optical detection and ultimately to help develop a reliable, portable system which can rapidly detect tripwires when operating in a minefield or mined areas. Trip and command wires can be extremely difficult to detect and devices using these wires currently represent a significant threat to British military personnel in vehicles and on foot patrol in Iraq and Afghanistan. The MOD research contract will see QinetiQ develop a sensor, based on polarisation technology, that could be used in a range of man-portable detection devices and that can effectively detect different types of trip wires in a variety of operational scenarios, environments and weather conditions.

“This research project is an important step in trying to automate the detection of tripwires,” said Simon Gadd, the MOD's Mobility Integrated Project Team Leader. He added: “The project aims to identify the optimum means of optical detection and ultimately to help develop a reliable, portable system which can rapidly detect tripwires when operating in a minefield or mined areas.”

Previous MOD funded research carried out by QinetiQ had shown that the use of polarisation information in imaging systems could dramatically improve target detection, particularly in cluttered environments plus overcome several forms of camouflage, concealment and deception. Significant improvements in signal-to-clutter ratios have been demonstrated against anti-tank and anti-personnel mines in the visible and infrared wavebands.

For this programme, QinetiQ has partnered with Qioptiq, a recognised independent manufacturer of military electro optic sensors, to conduct activities aimed at de risking any consequent equipment programme that could lead to the mass production of a miniaturised sensor.

“Reliable non contact tripwire detection is needed to ensure acceptable tempo of land operations,” added Jon Salkeld, MD of QinetiQ’s optronics division. “An effective electro-optic sensor would provide a valuable tool to assist with minefield clearance. QinetiQ’s strong polarimetric imaging team bring many years of experience of developing prototype sensors to deliver innovative imaging solutions. We look forward to working with Mobility IPT on this challenging programme.”

QinetiQ’s leading team has many years expertise in configuring, operating and understanding of polarimetric sensors and this has led to the development of a number of sensors to measure polarimetric signatures from the UV to the far infrared wavebands.

Douglas Millard | alfa
Further information:
http://www.QinetiQ.com

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>