Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Polarisation technology to enable tripwire detection

A sensor will be developed that can remotely detect command and trip wires attached to explosive devices following the award of an £800,000 contract by the UK Ministry of Defence to QinetiQ. The 18 month research contract aims to develop a highly sensitive electro optic sensor that is capable of detecting command and trip wires of less than a millimetre in diameter that are used to detonate conventional munitions, mines and many improvised explosive devices (IEDs).

The project aims to identify the best means of optical detection and ultimately to help develop a reliable, portable system which can rapidly detect tripwires when operating in a minefield or mined areas. Trip and command wires can be extremely difficult to detect and devices using these wires currently represent a significant threat to British military personnel in vehicles and on foot patrol in Iraq and Afghanistan. The MOD research contract will see QinetiQ develop a sensor, based on polarisation technology, that could be used in a range of man-portable detection devices and that can effectively detect different types of trip wires in a variety of operational scenarios, environments and weather conditions.

“This research project is an important step in trying to automate the detection of tripwires,” said Simon Gadd, the MOD's Mobility Integrated Project Team Leader. He added: “The project aims to identify the optimum means of optical detection and ultimately to help develop a reliable, portable system which can rapidly detect tripwires when operating in a minefield or mined areas.”

Previous MOD funded research carried out by QinetiQ had shown that the use of polarisation information in imaging systems could dramatically improve target detection, particularly in cluttered environments plus overcome several forms of camouflage, concealment and deception. Significant improvements in signal-to-clutter ratios have been demonstrated against anti-tank and anti-personnel mines in the visible and infrared wavebands.

For this programme, QinetiQ has partnered with Qioptiq, a recognised independent manufacturer of military electro optic sensors, to conduct activities aimed at de risking any consequent equipment programme that could lead to the mass production of a miniaturised sensor.

“Reliable non contact tripwire detection is needed to ensure acceptable tempo of land operations,” added Jon Salkeld, MD of QinetiQ’s optronics division. “An effective electro-optic sensor would provide a valuable tool to assist with minefield clearance. QinetiQ’s strong polarimetric imaging team bring many years of experience of developing prototype sensors to deliver innovative imaging solutions. We look forward to working with Mobility IPT on this challenging programme.”

QinetiQ’s leading team has many years expertise in configuring, operating and understanding of polarimetric sensors and this has led to the development of a number of sensors to measure polarimetric signatures from the UV to the far infrared wavebands.

Douglas Millard | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>