Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polarisation technology to enable tripwire detection

08.06.2007
A sensor will be developed that can remotely detect command and trip wires attached to explosive devices following the award of an £800,000 contract by the UK Ministry of Defence to QinetiQ. The 18 month research contract aims to develop a highly sensitive electro optic sensor that is capable of detecting command and trip wires of less than a millimetre in diameter that are used to detonate conventional munitions, mines and many improvised explosive devices (IEDs).

The project aims to identify the best means of optical detection and ultimately to help develop a reliable, portable system which can rapidly detect tripwires when operating in a minefield or mined areas. Trip and command wires can be extremely difficult to detect and devices using these wires currently represent a significant threat to British military personnel in vehicles and on foot patrol in Iraq and Afghanistan. The MOD research contract will see QinetiQ develop a sensor, based on polarisation technology, that could be used in a range of man-portable detection devices and that can effectively detect different types of trip wires in a variety of operational scenarios, environments and weather conditions.

“This research project is an important step in trying to automate the detection of tripwires,” said Simon Gadd, the MOD's Mobility Integrated Project Team Leader. He added: “The project aims to identify the optimum means of optical detection and ultimately to help develop a reliable, portable system which can rapidly detect tripwires when operating in a minefield or mined areas.”

Previous MOD funded research carried out by QinetiQ had shown that the use of polarisation information in imaging systems could dramatically improve target detection, particularly in cluttered environments plus overcome several forms of camouflage, concealment and deception. Significant improvements in signal-to-clutter ratios have been demonstrated against anti-tank and anti-personnel mines in the visible and infrared wavebands.

For this programme, QinetiQ has partnered with Qioptiq, a recognised independent manufacturer of military electro optic sensors, to conduct activities aimed at de risking any consequent equipment programme that could lead to the mass production of a miniaturised sensor.

“Reliable non contact tripwire detection is needed to ensure acceptable tempo of land operations,” added Jon Salkeld, MD of QinetiQ’s optronics division. “An effective electro-optic sensor would provide a valuable tool to assist with minefield clearance. QinetiQ’s strong polarimetric imaging team bring many years of experience of developing prototype sensors to deliver innovative imaging solutions. We look forward to working with Mobility IPT on this challenging programme.”

QinetiQ’s leading team has many years expertise in configuring, operating and understanding of polarimetric sensors and this has led to the development of a number of sensors to measure polarimetric signatures from the UV to the far infrared wavebands.

Douglas Millard | alfa
Further information:
http://www.QinetiQ.com

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>