Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel sugar-to-hydrogen technology promises transportation fuel independence

23.05.2007
The hydrogen economy is not a futuristic concept. The U.S. Department of Energy's 2006 Advance Energy Initiative calls for competitive ethanol from plant sources by 2012 and a good selection of hydrogen-powered fuel cell vehicles by 2020.

Researchers at Virginia Tech, Oak Ridge National Laboratory (ORNL), and the University of Georgia propose using polysaccharides, or sugary carbohydrates, from biomass to directly produce low-cost hydrogen for the new hydrogen economy.

According to the DOE, advances are needed in four areas to make hydrogen fuel an economical reality for transportation – production, storage, distribution, and fuel cells. Most industrial hydrogen currently comes from natural gas, which has become expensive. Storing and moving the gas, whatever its source, is costly and cumbersome, and even dangerous. And there is little infrastructure for refueling a vehicle.

"We need a simple way to store and carry hydrogen energy and a simple process to produce hydrogen, said Y.-H. Percival Zhang, assistant professor of biological systems engineering at Virginia Tech.

Using synthetic biology approaches, Zhang and colleagues Barbara R. Evans and Jonathan R. Mielenz of ORNL and Robert C. Hopkins and Michael W.W. Adams of the University of Georgia are using a combination of 13 enzymes never found together in nature to completely convert polysaccharides (C6H10O5) and water into hydrogen when and where that form of energy is needed. This "synthetic enzymatic pathway"research appears in the May 23 issue of PLoS ONE, the online, open-access journal from the Public Library of Science (www.plosone.org).

Polysaccharides like starch and cellulose are used by plants for energy storage and building blocks and are very stable until exposed to enzymes. Just add enzymes to a mixture of starch and water and "the enzymes use the energy in the starch to break up water into only carbon dioxide and hydrogen,"Zhang said.

A membrane bleeds off the carbon dioxide and the hydrogen is used by the fuel cell to create electricity. Water, a product of that fuel cell process, will be recycled for the starch-water reactor. Laboratory tests confirm that it all takes place at low temperature -- about 86 degrees F -- and atmospheric pressure.

The vision is for the ingredients to be mixed in the fuel tank of your car, for instance. A car with an approximately 12-gallon tank could hold 27 kilograms (kg) of starch, which is the equivalent of 4 kg of hydrogen. The range would be more than 300 miles, Zhang estimates. One kg of starch will produce the same energy output as 1.12 kg (0.38 gallons) of gasoline.

Since hydrogen is gaseous, hydrogen storage is the largest obstacle to large-scale use of hydrogen fuel. The Department of Energy's long-term goal for hydrogen storage was 12 mass percent, or 0.12 kg of hydrogen per one kg of container or storage material, but such technology is not available, said Zhang. Using polysaccharides as the hydrogen storage carrier, the research team achieved hydrogen storage capacity as high as 14.8 mass percent, they report in the PLOS article.

The idea began as a theory. The research was based on Zhang's previous work pertaining to cellulosic ethanol production and the ORNL and University of Georgia researchers' work with enzymatic hydrogen production. UGA Distinguished Professor Adams is co-author of the first enzymatic hydrogen paper in Nature Biotechnology in 1996. The researchers were certain they could put the processes together in one pot. They tested the theory using Oak Ridge's hydrogen detectors and documented that hydrogen is produced as they predicted.

Mielenz, who heads the Bioconversion Group in ORNL's Biosciences Division, attributed the successful research to a unique collaborative working relationship between scientists, lab divisions, and universities.

"Pairing our biomass conversion capabilities with facilities for studying renewable hydrogen production in the lab's Chemical Sciences Division was a key to this project,"Mielenz said. "This also shows the value of partnerships with universities such as Virginia Tech and the University of Georgia."

It is a new process that aims to release hydrogen from water and carbohydrate by using multiple enzymes as a catalyst, Zhang said. "In nature, most hydrogen is produced from anaerobic fermentation. But hydrogen, along with acetic acid, is a co-product and the hydrogen yield is pretty low -- only four molecules per molecule of glucose. In our process, hydrogen is the main product and hydrogen yields are three-times higher, and the likely production costs are low – about $1 per pound of hydrogen. "

Over the years, many substances have been proposed as "hydrogen carriers,"such as methanol, ethanol, hydrocarbons, or ammonia – all of which require special storage and distribution. Also, the thermochemical reforming systems require high temperatures and are complicated and bulky. Starch, on the other hand, can be distributed by grocery stores, Zhang points out.

"So it is environmentally friendly, energy efficient, requires no special infrastructure, and is extremely safe. We have killed three birds with one stone,"he said. "We have hydrogen production with a mild reaction and low cost. We have hydrogen storage and transport in the form of starch or syrups. And no special infrastructure is needed."

"The next R&D step will be to increase reaction rates and reduce enzyme costs," Zhang said. "We envision that in the future we will drive vehicles powered by carbohydrate, or energy stored in solid carbohydrate form, with hydrogen production from carbohydrate and water, and electricity production via hydrogen-fuel cells.

"What is more important, the energy conversion efficiency from the sugar-hydrogen-fuel cell system is extremely high – greater than three times higher than a sugar-ethanol-internal combustion engine,"Zhang said. "It means that if about 30 percent of transportation fuel can be replaced by ethanol from biomass as the DOE proposed, the same amount of biomass will be sufficient to provide 100 percent of vehicle transportation fuel through this technology."

In addition, the use of carbohydrates from biomass as transportation fuels will produce zero net carbon dioxide emissions and bring benefits to national energy security and the economy, Zhang said.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>