Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terahertz imaging goes the distance

30.04.2007
News from the Conference on Lasers and Electro-optics/Quantum Electronics Laser Science Conference

Terahertz (THz) radiation, or far-infrared light, is potentially very useful for security applications, as it can penetrate clothing and other materials to provide images of concealed weapons, drugs, or other objects. However, THz scanners must usually be very close to the objects they are imaging. Doubts have lingered over whether it is possible to use THz waves to image objects that are far away, because water vapor in air absorbs THz radiation so strongly that most of it never reaches the object to be imaged.

At the upcoming CLEO/QELS meeting in Baltimore, an MIT-Sandia team will demonstrate the first real-time THz imaging system that obtains images from 25 meters away. The technique takes advantage of the fact that there are a few "windows," or frequency ranges, of the terahertz spectrum that do not absorb water very strongly. The MIT-Sandia group designed a special, semiconductor-based device known as a "quantum cascade laser" that delivers light in one of these windows (specifically, around 4.9 THz). They shine this light through a thin target with low water content (for example, a dried seed pod), and a detector on the other side of the sample records an image.

A cryorefrigerator maintains the laser at a temperature of 30 Kelvin, where it produces 17 milliwatts of power (as opposed to the microwatts of power typical of pulsed terahertz sources) in order to provide enough terahertz radiation to obtain a decent image. Increasing the power of the lasers and sensitivity of the detectors can potentially enable imaging of thicker objects or imaging of the reflected light, which would be more practical for security applications. In addition, the development of high-operating-temperature quantum cascade lasers, which operate without the use of cryogenic materials, may also increase the availability of this approach. In the closer term, however, this approach may enable sensing of chemical residues or contaminants in the air.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org
http://www.cleoconference.org

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>