University unveils £1 million high-tech test facility

It complements the existing Rolls-Royce University Technology Centre (UTC) and will develop and evaluate ultra-compact and intelligent electrical networks for use in a range of products including Uninhabited Autonomous Vehicles (UAVs).

Housed in the School of Electrical and Electronic Engineering (EEE), the facility is being jointly funded by Rolls-Royce and the Systems Engineering Autonomous Systems Defence Technology Centre (SEAS-DTC) programme co-ordinated by BAE Systems and sponsored by The Ministry of Defence.

Dr Sandy Smith, Director of the Rolls-Royce UTC at The University of Manchester, said: “Increased use of electrical technology in areas like aerospace means the next generation aircraft will have highly sophisticated electrical systems that offer greater operational flexibility, improved fuel consumption and lower environmental emissions.”

Dr Stephen Long, facility project manager at Rolls-Royce, said: “In the future we will see a rapid growth in the use of uninhabited land, sea and air vehicles for military, civil and public use. The electrical systems requirements for these platforms are particularly demanding because they need to be compact, flexible and intelligent.”

Professor John Perkins, Vice-President and Dean of The Faculty of Engineering and Physical Sciences at The University of Manchester, said: “This excellent new facility strengthens further our productive relationship with Rolls-Royce, which has been delivering exciting results and innovations. This latest development will allow further exchange of skills between The University and Rolls-Royce and will provide fresh opportunities for training and development.”

Phill Cartwright, Rolls-Royce Head of Electrical Systems, added: “Our investment in this area reflects the rapidly increasing importance of electrical systems in each of Rolls-Royce's key markets of aerospace, marine and energy.

“The quest for enhanced electrical technologies is driven by customer demands for improvements in performance, capabilities and services. Emerging electrical technologies have the potential to meet these demands by enabling major improvements in system integration and product functionality.”

Police and fire services are becoming increasingly interested in uninhabited air vehicles for surveillance purposes. They could save the emergency services valuable time and money and also allow access to situations too dangerous for manned craft.

Rolls-Royce established the University Technology Centre (UTC) in Manchester in 2004 to pursue research into innovative electrical technologies for aerospace, marine and energy applications. It is part of the School of Electrical and Electronic Engineering’s Power Conversion Group.

Research is focused on designing electrical systems which are lighter, more flexible and reliable than the heavy pneumatic and mechanical systems used on ships and planes today.

The UTC specialises in the design of electrical systems for air, sea and land vehicles which operate in ‘extreme environments’ like those experienced by planes at altitudes of 60,000ft and by ships submerged in freezing waters.

The Manchester UTC works in collaboration with Rolls-Royce, and two other electrical UTCs at the Universities of Sheffield and Strathclyde.

It is based just one mile from where Charles Rolls and Henry Royce forged their original partnership at Manchester’s Midland Hotel in 1904.

Media Contact

Jon Keighren alfa

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors