Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Materials for Making “Spintronic” Devices

27.04.2007
Pushing the development of electronics beyond the limits of electric charge

An interdisciplinary group of scientists at the U.S. Department of Energy’s Brookhaven National Laboratory has devised methods to make a new class of electronic devices based on a property of electrons known as “spin,” rather than merely their electric charge. This approach, dubbed spintronics, could open the way to increasing dramatically the productivity of electronic devices operating at the nanoscale — on the order of billionths of a meter. The Brookhaven scientists have filed a U.S. provisional patent application for their invention, which is now available for licensing.

“This development can open the way for the use of spintronics in practical room temperature devices, an exciting prospect,” said DOE Under Secretary for Science Raymond L. Orbach. “The interplay between outstanding facilities and laboratory researchers is a root cause for this achievement, and a direct consequence of the collaborative transformational research that takes place in our DOE laboratories.”

In the field of electronics, devices based on manipulating electronic charges have been rapidly shrinking and, therefore, getting more efficient, ever since they were first developed in the middle of the last century. “But progress in miniaturization and increasing efficiency is approaching a fundamental technological limit imposed by the atomic structure of matter,” said physicist Igor Zaliznyak, lead author on the Brookhaven Lab patent application. Once you’ve made circuits that approach the size of a few atoms or a single atom, you simply cannot make them any smaller.

To move beyond this limit, Zaliznyak’s team has been exploring ways to take advantage of an electron’s “quantum spin” in addition to its electric charge.

You can think of spin as somewhat analogous to the spin of a toy top, where the axis of rotation can point in any direction. But unlike a top, which can be slowed down, the “spinning” electron’s rotation is a quantum property — that is, a set amount that cannot change. By aligning the spins of multiple electrons so they all point the same way — known as polarization — scientists aim to create a current of spins in addition to a current of charges.

The Brookhaven group uses magnetism to manipulate spin in graphene, a material consisting of flat sheets of carbon atoms arranged in a hexagonal pattern. They’ve proposed ways to make materials consisting of layers of graphene mated to magnetic and nonmagnetic layers.

These “graphene-magnet multilayers” (GMMs) are expected to retain their properties at room temperature, an important practical requirement for spintronic devices. By properly arranging the magnetization of the magnetic layer(s), they can be used to create a full spectrum of spintronic devices, including (re-)writable microchips, transistors, logic gates, and more. Using magnetism for spin manipulation also opens exciting possibilities for creating active, re-writable and re-configurable devices whose function changes depending on the magnetization pattern written on the magnetic medium.

“Graphene is quite unique,” Zaliznyak says, “in that an ideally balanced sheet is neither a conductor nor an insulator. Related to this is the fact that electrons in graphene behave in such a way that their mass effectively vanishes!” In other words, he explains, they move without inertia, like rays of light or particles accelerated to relativistic speeds — that is, close to the speed of light.

Such relativistic particles are studied at Brookhaven at the Relativistic Heavy Ion Collider (RHIC), a nuclear physics facility where scientists are trying to understand the fundamental properties and forces of matter. RHIC theoretical physicist Dmitri Kharzeev and condensed matter physicist Alexei Tsvelik have collaborated with Zaliznyak to gain a better understanding of the physics of magnetized graphene.

“Unifying the pool of knowledge and ideas of two fields is a great advantage for building the theoretical foundation for future devices,” Zaliznyak said. The patent application filed by the Brookhaven scientists, which puts graphene-magnet multilayers to work, leverages the large amount of scientific knowledge accumulated in both fields into developing a novel technology. Plus, the opportunity to study relativistic particles in two dimensions — on flat sheets of graphene — was an unexpected and useful arena for Brookhaven’s nuclear physicists trying to understand the properties of the matter produced at RHIC.

The patent application covers the methods for making the graphene-magnet multilayers, methods of using the GMMs, methods of magnetizing the GMMs, methods for measuring spintronic “current” in GMMs, and the spintronic devices made from GMMs.

This work was funded by the Office of Basic Energy Sciences and the Office of Nuclear Physics, both within the U.S. Department of Energy’s Office of Science. For licensing information, please contact: Kimberley Elcess, Principal Licensing Specialist, Brookhaven National Laboratory, (631) 344-4151, elcess@bnl.gov.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>