Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Renewable hydrogen energy - an answer to the energy crisis?

19.04.2007
Harvesting solar energy to produce renewable, carbon free and cost effective hydrogen as an alternative energy source is the focus of a new £4.2 million research programme at Imperial College London, it is announced.

The College’s Energy Futures Lab receives the funding from the Engineering and Physical Sciences Research Council (EPSRC).

The programme will develop both biological and chemical solar driven processes to develop renewable and cost effective methods of producing hydrogen which can be used to operate fuel cells. Fuel cells are electrochemical devices that can convert hydrogen to electricity and heat at a very high efficiency, with the only emissions being clean water.

Scientists believe that hydrogen could be an effective solution to reducing the world’s dependence on non-renewable carbon-producing fossil fuels because it is clean, portable and versatile. Professor Nigel Brandon, Principal Investigator on the project and Director of the Energy Futures Lab, says:

"The successful production of solar energy-driven renewable hydrogen could transform the supply of carbon free fuel and make an enormous impact on the viability of hydrogen as an energy carrier. In addition, it will be an essential step on the route to fully exploiting fuel cell technology. It will position the UK as a world leader in one of the very few solutions to a truly sustainable energy future."

Spanning five years, the project aims to significantly increase the efficiency of solar driven hydrogen production processes, integrating science and engineering to deliver a prototype reactor for domestic and industrial use. This will create a unique facility, which the team hopes will place Imperial College and the UK at the forefront of renewable hydrogen production, both for the UK’s own future clean energy supply and also for the sustainable exploitation of hydrogen energy worldwide.

The project aims to develop materials and technologies for the enhanced production of hydrogen from water using solar energy to drive the process. The biological process will mimic how plants work, using green algae. The oxygen and hydrogen produced will then be separated and the hydrogen stored, ready for use in a fuel cell. The chemical process will use photo-electrodes to directly split water into molecular oxygen and hydrogen using both inorganic electrodes and molecular catalysts whose function will mimic the water oxidation enzyme of plant photosynthesis.

The project will culminate in the design, build and operation of a working prototype system, with the aim of demonstrating that solar energy can be directly harvested to produce hydrogen, and in turn cost effective electricity and heat.

EPSRC Interim Chief Executive, Dr Randal Richards says:

"This is excellent, exciting, multidisciplinary research. It is also the first time that we have funded a project of this size in the area of solar hydrogen production. This work has enormous potential to speed up the development of competitive alternatives to fossil fuels. It will significantly strengthen the UK’s contribution to the international effort to deliver new sustainable energy technologies."

The programme draws together a new interdisciplinary team from across Imperial College, under the umbrella of the Energy Futures Lab, with Professor Nigel Brandon as the Principal Investigator. The team comprises Jim Barber (Molecular Biosciences), James Durrant (photochemistry), Klaus Hellgardt (catalytic reactor engineering), Geoff Kelsall (electrochemical reactor engineering), David Klug (molecular energy transduction), Geoff Maitland (energy engineering), and Peter Nixon (Biology).

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk/energyfutureslab
http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_19-4-2007-11-15-23?newsid=10214

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>