Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Renewable hydrogen energy - an answer to the energy crisis?

Harvesting solar energy to produce renewable, carbon free and cost effective hydrogen as an alternative energy source is the focus of a new £4.2 million research programme at Imperial College London, it is announced.

The College’s Energy Futures Lab receives the funding from the Engineering and Physical Sciences Research Council (EPSRC).

The programme will develop both biological and chemical solar driven processes to develop renewable and cost effective methods of producing hydrogen which can be used to operate fuel cells. Fuel cells are electrochemical devices that can convert hydrogen to electricity and heat at a very high efficiency, with the only emissions being clean water.

Scientists believe that hydrogen could be an effective solution to reducing the world’s dependence on non-renewable carbon-producing fossil fuels because it is clean, portable and versatile. Professor Nigel Brandon, Principal Investigator on the project and Director of the Energy Futures Lab, says:

"The successful production of solar energy-driven renewable hydrogen could transform the supply of carbon free fuel and make an enormous impact on the viability of hydrogen as an energy carrier. In addition, it will be an essential step on the route to fully exploiting fuel cell technology. It will position the UK as a world leader in one of the very few solutions to a truly sustainable energy future."

Spanning five years, the project aims to significantly increase the efficiency of solar driven hydrogen production processes, integrating science and engineering to deliver a prototype reactor for domestic and industrial use. This will create a unique facility, which the team hopes will place Imperial College and the UK at the forefront of renewable hydrogen production, both for the UK’s own future clean energy supply and also for the sustainable exploitation of hydrogen energy worldwide.

The project aims to develop materials and technologies for the enhanced production of hydrogen from water using solar energy to drive the process. The biological process will mimic how plants work, using green algae. The oxygen and hydrogen produced will then be separated and the hydrogen stored, ready for use in a fuel cell. The chemical process will use photo-electrodes to directly split water into molecular oxygen and hydrogen using both inorganic electrodes and molecular catalysts whose function will mimic the water oxidation enzyme of plant photosynthesis.

The project will culminate in the design, build and operation of a working prototype system, with the aim of demonstrating that solar energy can be directly harvested to produce hydrogen, and in turn cost effective electricity and heat.

EPSRC Interim Chief Executive, Dr Randal Richards says:

"This is excellent, exciting, multidisciplinary research. It is also the first time that we have funded a project of this size in the area of solar hydrogen production. This work has enormous potential to speed up the development of competitive alternatives to fossil fuels. It will significantly strengthen the UK’s contribution to the international effort to deliver new sustainable energy technologies."

The programme draws together a new interdisciplinary team from across Imperial College, under the umbrella of the Energy Futures Lab, with Professor Nigel Brandon as the Principal Investigator. The team comprises Jim Barber (Molecular Biosciences), James Durrant (photochemistry), Klaus Hellgardt (catalytic reactor engineering), Geoff Kelsall (electrochemical reactor engineering), David Klug (molecular energy transduction), Geoff Maitland (energy engineering), and Peter Nixon (Biology).

Abigail Smith | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>