Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble’s solar arrays - behind the scenes

06.03.2002


The Hubble space telescope


The power for Hubble’s scientific discoveries comes from solar cells. Designing and constructing Hubble’s first two sets of solar cell arrays constituted a huge technological achievement for the European Space Agency and European industry. After an in-orbit life of more than 8 years, this example of pioneering space technology was this morning (European time) replaced by new, more powerful arrays.

For the last week a dedicated team of engineers, technicians and scientists from the European Space Agency (ESA) has been focused intensely on the exchange of the solar arrays on the ESA/NASA Hubble Space Telescope. Based at NASA’s Goddard Space Flight Centre, which is the nerve centre for these operations, the team has spent an intense few days supporting NASA in the exchange of the solar arrays.

Team leader, project manager Ton Linssen from ESA’s Science Directorate at ESTEC, the Netherlands, explains: "The new arrays are yet another step in the longstanding, international partnership between ESA and NASA. ESA provided the first two sets of solar arrays, and for the third pair ESA and European industry designed, developed and tested the drive mechanisms which manoeuvre the arrays so that they stay pointed at the Sun. ESA was also involved in a unique testing of the new arrays in October 2000, which had never been done before. In the huge test chamber at ESTEC the rapid temperature change around sunset and sunrise in orbit can be simulated and any, even very small, movement of the arrays can be measured. Our facility is the only place in the world where this can be done."



Ton Linssen welcomes the exchange of Hubble’s arrays: "The new arrays are much better than the previous set. They are rigid, smaller and produce more power to be used for Hubble’s new generation of instruments. But this is certainly also to be expected. There are 20 years of significant technological development between the old and new sets of solar arrays. And don’t forget that there was no room for arrays of this size [when folded together] and weight [twice that of the old arrays] in the Space Shuttle when Hubble was launched."

Elegant solutions to a difficult technical problem

The first two sets of solar arrays had to fulfill a number of highly demanding requirements. Technical manager Michael Eiden from ESA in the Netherlands elaborates: "They needed to be lightweight, have a large surface area [to deliver the specified power] and be able to be stowed in a very compact manner, in order to be launched attached to the telescope in the Shuttle cargo bay."

Designers came up with a solution where the solar cells are attached to a flexible blanket that can be deployed and retracted – essentially rolled out and in around a central drum, like a roller-blind. The first pair of flexible solar arrays were seen early on to be sensitive to temperature changes whenever Hubble went in and out of the Earth’s shadow. This affected the very high stability required for Hubble’s scientific observations. For the second set, installed in December 1993, European experts found an ingenious solution to correct for this little motion by isolating the main structure of the arrays from the temperature changes and suspending the solar cell blanket in a new way.

The flexibility also made its mark on the appearance of the first two sets of arrays. "Some people are surprised by how the arrays look," says Eiden. "They expect them to be perfectly flat, but in fact the somewhat warped appearance of the arrays just reflects their extreme lightness. From an engineering point of view, we think they are an elegant solution to a difficult technical problem."

No challenges without problems

Having risen to the challenge of building Hubble’s ’power plant’, small surprises still lay in store for the team. During the last Hubble Servicing Mission (SM3A) in 1999 the team inspected the very detailed photographic survey of the solar arrays that NASA had made for ESA. Suddenly they found something that was not supposed to be there. "We were on the planning shift when the astronauts were sleeping, and we looked for possible damage after micrometeorite impacts. It was a great surprise when we saw a ’hinge pin’ protrude from one of the sides of the arrays. Later we found a few more protruding pins."
The hinge pins are 2.4 metre long strings of piano wire that hold the segments of solar cells together. The team believes that these pins wander back and forth due to differences in the thermal expansion between the solar blanket and the pins themselves when Hubble comes in and out of the Sun. The temperature has cycled between +60 °C to -85 °C and back 45 000 times during the lifetime of the second set of arrays. "At first we were a bit concerned. We had to investigate the possibility that the solar blanket segments could fall apart at a later time if the pins fell out completely. We came to the conclusion that the solid construction of the blanket would prevent this from happening. This was subsequently proven by tests on the ground."

Smiling faces

Given the challenges the team had overcome in building the record-breaking arrays, there were all smiles in the ’Attached Shuttle Payload Control Center’ on Sunday when the astronauts announced "Good to see that the SAs [Solar Arrays] are nominal!" At 9:32 UT Hubble was ’grappled’ by the Shuttle arm. After examining the TV picture relayed back to Earth, ESA’s solar generator specialist Lothar Gerlach, uttered: "I knew it! Everything is fine!" and added jokingly: "Look at these beauties [the arrays]. Let’s just leave them up there!"

With a backdrop of lightning on the night side of the Earth preparations were made for the retraction of the solar arrays. And then the moment of truth came for the team. Ton Linssen describes: "It was a really intense phase just when the arrays had to be retracted. We did not know how the more than eight years in space had affected the mechanisms or perhaps changed the array blankets or insulation." His concern proved to be unfounded. The retraction worked beautifully, and the arrays could be exchanged without problems during the spacewalks on the two following nights.

Linssen says: "I must admit I am a happy man this morning. The solar arrays have by far exceeded the 5 year lifetime they were built for. They have worked flawlessly for more than 8 years and even exceeded the power output they were specified to deliver by about 10%."

What next?

When ESA’s first set of solar arrays were brought back to Earth in 1993 scientists and engineers were eager to jump on them and examine the effects of their exposure to the harsh environment at 600 km altitude. They found more than 80 000 particle impacts of varying sizes. Lothar Gerlach, who is the central person in these ’post-flight activities’, says: "I am very excited to see our arrays having performed so fabulously, even after this many impacts! The big question is: what caused all these impacts? Some are impacts from micrometeorites coming from the birth of the Solar System, and some can be attributed to paint flakes from spacecraft or other space debris." The analyses on the first arrays have shown that they are hit daily by as many as 1000 small (0.001 mm or 1 micron-sized) objects.

As soon as the Space Shuttle lands with the second set of ESA arrays, Lothar Gerlach will be hoisted into the Shuttle’s cargo bay. Here he will take samples of the arrays before they are ’contaminated’ by our atmosphere. Then the arrays will be sent back to Europe and will await further analysis. The scientific contribution of ESA’s solar arrays will in this way continue for a number of years into the future, no longer for observational astronomy, but for material science and space debris research.

| ESA

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>