Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft researchers predict 'nanobattery' performance

03.04.2007
Researchers at Delft University of Technology can predict how nanostructuring – the extreme reduction of structure – will affect the performance of Li-ion batteries.

The nanostructuring of battery materials is likely to be common practice in the future, but it is not always performance-enhancing. The research findings have recently been published in the Journal of the American Chemical Society.

A Li-ion battery is currently the smallest and lightest way to store as much rechargeable electrical energy as possible. However, the batteries are slow to charge and discharge, and this restricts their suitability for applications such as hybrid and electric vehicles. This sluggish performance is largely determined by the relatively long distance the lithium-ions have to travel through the electrode material in the battery. The speed at which the ions make their way through the electrode material is also slow compared to that in electrolyte (the fluid between the electrode material). The current strategy is therefore to nanostructure the electrode particles; that is to say, to make them very small (measurable in nanometres), and by doing so to shorten the existing route within the electrode material.

Yet the battery performance of materials nanostructured in this way has failed to meet expectations. To a great extent, these discrepancies were not understood. By using neutron-diffraction research technology, researchers at Delft University of Technology's Reactor Institute Delft (RID) have discovered that when the electrode particles are scaled down, the properties of the material structure change significantly. The phase balance that is generally present in this type of material changes and even disappears completely if the electrode sections become small enough.

Based on these findings, the researchers (Marnix Wagemaker, Wouter Borghols and Fokko Mulder) can predict how the nanostructures will affect the performance of the Li-ion batteries. They have concluded that the nanostructures of the electrode materials in Li-ion batteries is largely dependent on the material and the exact particle size. At a more general level, their findings are important for applications in which small ions diffuse into nanocrystals, such as hydrogen storage and the formation of alloys.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>