Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft researchers predict 'nanobattery' performance

03.04.2007
Researchers at Delft University of Technology can predict how nanostructuring – the extreme reduction of structure – will affect the performance of Li-ion batteries.

The nanostructuring of battery materials is likely to be common practice in the future, but it is not always performance-enhancing. The research findings have recently been published in the Journal of the American Chemical Society.

A Li-ion battery is currently the smallest and lightest way to store as much rechargeable electrical energy as possible. However, the batteries are slow to charge and discharge, and this restricts their suitability for applications such as hybrid and electric vehicles. This sluggish performance is largely determined by the relatively long distance the lithium-ions have to travel through the electrode material in the battery. The speed at which the ions make their way through the electrode material is also slow compared to that in electrolyte (the fluid between the electrode material). The current strategy is therefore to nanostructure the electrode particles; that is to say, to make them very small (measurable in nanometres), and by doing so to shorten the existing route within the electrode material.

Yet the battery performance of materials nanostructured in this way has failed to meet expectations. To a great extent, these discrepancies were not understood. By using neutron-diffraction research technology, researchers at Delft University of Technology's Reactor Institute Delft (RID) have discovered that when the electrode particles are scaled down, the properties of the material structure change significantly. The phase balance that is generally present in this type of material changes and even disappears completely if the electrode sections become small enough.

Based on these findings, the researchers (Marnix Wagemaker, Wouter Borghols and Fokko Mulder) can predict how the nanostructures will affect the performance of the Li-ion batteries. They have concluded that the nanostructures of the electrode materials in Li-ion batteries is largely dependent on the material and the exact particle size. At a more general level, their findings are important for applications in which small ions diffuse into nanocrystals, such as hydrogen storage and the formation of alloys.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>