Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar energy conversion offers a solution to help mitigate global warming

08.03.2007
Solar energy has the power to reduce greenhouse gases and provide increased energy efficiency, says a scientist at the U.S. Department of Energy's Argonne National Laboratory, in a report (view it online) published in the March issue of Physics Today.

Last month, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations released a report confirming global warming is upon us and attributing the growing threat to the man-made burning of fossil fuels.

Opportunities to increase solar energy conversion as an alternative to fossil fuels are addressed in the Physics Today article, co-authored by George Crabtree, senior scientist and director of Argonne's Materials Science Division, and Nathan Lewis, professor of Chemistry at Caltech and director of its Molecular Materials Research Center.

Currently, between 80 percent and 85 percent of our energy comes from fossil fuels. However, fossil fuel resources are of finite extent and are distributed unevenly beneath Earth's surface. When fossil fuel is turned into useful energy through combustion, it often produces environmental pollutants that are harmful to human health and greenhouse gases that threaten the global climate. In contrast, solar resources are widely available and have a benign effect on the environment and climate, making it an appealing alternative energy source.

“Sunlight is not only the most plentiful energy resource on earth, it is also one of the most versatile, converting readily to electricity, fuel and heat,” said Crabtree. “The challenge is to raise its conversion efficiency by factors of five or ten. That requires understanding the fundamental conversion phenomena at the nanoscale. We are just scratching the surface of this rich research field.”

Argonne carries out forefront basic research on all three solar conversion routes. The laboratory is creating next-generation nanostructured solar cells using sophisticated atomic layer deposition techniques that replace expensive silicon with inexpensive titanium dioxide and chemical dyes. Its artificial photosynthesis program imitates nature using simple chemical components to convert sunlight, water and carbon dioxide directly into fuels like hydrogen, methane and ethanol. Its program on thermoelectric materials takes heat from the sun and converts it directly to electricity.

The Physics Today article is based on the conclusions contained in the report of the Basic Energy Sciences Workshop on Solar Energy Utilization sponsored by the U.S. Department of Energy. Crabtree and Lewis served as co-chairs of the workshop and principal editors of the report. The key conclusions of the report identified opportunities for higher solar energy efficiencies in the areas of:

- Electricity – important research developments lie in the development of new, less expensive materials for solar cells, including organics, thin films, dyes and shuttle ions, and in understanding the dynamics of charge transfer across nanostructured interfaces.

- Fuel – solar photons can be converted into chemical fuel more resourcefully by breeding or genetically engineering designer plants, connecting natural photosynthetic pathways in novel configurations and using artificial bio-inspired nanoscale systems.

- Heat – controlling the size, density and distribution of nanodot inclusions during bulk synthesis could enhance thermoelectric performance and achieve more reliable and inexpensive electricity production from the sun's heat.

The nation's first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America's scientific leadership and prepare the nation for the future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or scarson@anl.gov) at Argonne.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>