Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT reactor aids study of potential energy source

15.02.2007
For about six months of the year, bursts of a hot, electrically charged gas, or plasma, swirl around a donut-shaped tube in a special MIT reactor, helping scientists learn more about a potential future energy source: nuclear fusion.

During downtimes when the reactor is offline, as it is right now, engineers make upgrades that will help them achieve their goal of making fusion a viable energy source--a long-standing mission that will likely continue for decades.

MIT's reactor, known as Alcator C-Mod, is one of several tokamak plasma discharge reactors in the world. Inside the reactor, magnetic fields control the superheated plasma (up to 50 million degrees Kelvin) as it flows around the tube.

Fusion occurs when two deuterons, or one deuteron and one triton--nuclei of heavy hydrogen--fuse, creating helium and releasing energy. The reactions can only occur at extremely high temperatures.

Although MIT's reactor is smaller than others, it has a stronger magnetic field than some larger reactors, allowing the plasma to become denser at comparable temperatures. "That positions us to provide important data you can't get anywhere else," said Earl Marmar, head of MIT's Alcator C-Mod project and senior research scientist in the Department of Physics.

One major goal of the upgrades is to create a system where plasma can flow in a steady state, rather than short pulses, or bursts.

Last year, engineers added a microwave generator that creates phased waves that flow around the ring, reinforcing the plasma current. The microwaves interact with the highest velocity electrons in the plasma, pushing them around the ring.

"It's possible to use this approach to go to fully steady-state plasma," Marmar said. "As an attractive energy source, ultimately we want steady state."

Benefits of a steady-state system include a constant energy output, less need for energy storage and less stress on the system, he said.

This year's modifications include the installation of a cryopump, which will allow scientists to control the density of the plasma over a long period of time--another necessary step to achieving a steady-state flow.

Several other modifications will allow the researchers to more accurately measure properties of the plasma, such as density and temperature. The new devices will also allow them to more accurately detect and measure magnetic and electric fields generated by the plasma.

The reactor, which has been offline for upgrades since August, is expected to be ready to use again starting in March.

More than 100 MIT researchers from the Departments of Physics, Nuclear Science and Engineering, and Electrical Engineering and Computer Science, including about 30 graduate students, use the Alcator C-Mod reactor to run experiments.

On a recent morning, the control room, normally packed with scientists at about 100 computer monitors, was nearly empty while engineers, scientists and students worked on modifications to the reactor, located in the next room.

When experiments are going on, researchers from around the world can participate in and watch the proceedings through the Internet.

There is high demand for time to run experiments on the reactor, but priority is given to projects that have high relevance to the Alcator goals and also to MIT graduate student research projects.

"One of our highest priorities is to get graduate students the run time they need," Marmar said.

For more information on the Alcator project, visit www.psfc.mit.edu/research/alcator/.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu
http://www.psfc.mit.edu/research/alcator/

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>