Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Japan and EURATOM partnership for joint implementation of fusion energy research

On February 5, 2007 in Tokyo, the Minister for Foreign Affairs of Japan and the Ambassador of the Delegation of the European Commission to Japan signed the Agreement between the Government of Japan and the European Atomic Energy Community for the Joint Implementation of the Broader Approach Activities in the Field of Fusion Energy Research in Tokyo.

This so-called "Broader Approach" materialises the privileged partnership of Japan and EURATOM in the field of fusion energy research. Japan and EURATOM will work together on three individual projects under this Agreement to accelerate the realisation of fusion energy as a clean and sustainable energy source for the 21st century. The Agreement will have a duration of ten years.

The signature of this Agreement marks another milestone in the strong cooperation between Japan and EURATOM in the field of fusion energy research. This co-operation aims at complementing the ITER Project, the international project on fusion energy at an early realisation of fusion energy for peaceful purposes, by carrying out R&D and developing some advanced technologies for the future demonstration power reactor (DEMO).

Welcoming the signature of the Agreement, the Director General Nominee of the ITER Organization, Mr Kaname Ikeda said: “ITER and the Broader Approach, together with the current level of fusion research being undertaken world-wide, represent a big step towards the realisation of fusion power”.

The three large research projects will be undertaken in Japan under the framework of this Agreement. These projects are closely related to the implementation of the ITER Project and will be on a time frame compatible with the ITER construction phase. The first two projects will be carried out at Rokkasho, Aomori and the third project will be carried out at Naka, Ibaraki. The participation in each research project will be open to the other ITER Parties.

1. Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility (IFMIF/EVEDA).

The future realisation of fusion energy will require materials which have endurance and show low radioactivity against the exposure to the harsh thermal and irradiation conditions inside a fusion reactor. IFMIF will allow testing and qualification of advanced materials in the environment conditions of a future fusion power reactor. The Engineering Validation and Design Activities aim at producing a detailed, complete and fully integrated engineering design of IFMIF.

2. International Fusion Energy Research Centre (IFERC).

IFERC consists of activities on DEMO design R&D, Computational Simulation and ITER Remote Experimentation towards the realisation of DEMO.

3. Satellite Tokamak Programme

The JT-60 tokamak will be upgraded to an advanced superconducting tokamak JT-60 SA, and be exploited under the framework of this Agreement as a "satellite" facility to ITER. The Satellite Tokamak Programme is expected to develop operating scenarios and address key physics issues for an efficient start up of ITER experimentation and for research towards DEMO.

Jennifer Hay | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>