Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japan and EURATOM partnership for joint implementation of fusion energy research

12.02.2007
On February 5, 2007 in Tokyo, the Minister for Foreign Affairs of Japan and the Ambassador of the Delegation of the European Commission to Japan signed the Agreement between the Government of Japan and the European Atomic Energy Community for the Joint Implementation of the Broader Approach Activities in the Field of Fusion Energy Research in Tokyo.

This so-called "Broader Approach" materialises the privileged partnership of Japan and EURATOM in the field of fusion energy research. Japan and EURATOM will work together on three individual projects under this Agreement to accelerate the realisation of fusion energy as a clean and sustainable energy source for the 21st century. The Agreement will have a duration of ten years.

The signature of this Agreement marks another milestone in the strong cooperation between Japan and EURATOM in the field of fusion energy research. This co-operation aims at complementing the ITER Project, the international project on fusion energy at an early realisation of fusion energy for peaceful purposes, by carrying out R&D and developing some advanced technologies for the future demonstration power reactor (DEMO).

Welcoming the signature of the Agreement, the Director General Nominee of the ITER Organization, Mr Kaname Ikeda said: “ITER and the Broader Approach, together with the current level of fusion research being undertaken world-wide, represent a big step towards the realisation of fusion power”.

The three large research projects will be undertaken in Japan under the framework of this Agreement. These projects are closely related to the implementation of the ITER Project and will be on a time frame compatible with the ITER construction phase. The first two projects will be carried out at Rokkasho, Aomori and the third project will be carried out at Naka, Ibaraki. The participation in each research project will be open to the other ITER Parties.

1. Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility (IFMIF/EVEDA).

The future realisation of fusion energy will require materials which have endurance and show low radioactivity against the exposure to the harsh thermal and irradiation conditions inside a fusion reactor. IFMIF will allow testing and qualification of advanced materials in the environment conditions of a future fusion power reactor. The Engineering Validation and Design Activities aim at producing a detailed, complete and fully integrated engineering design of IFMIF.

2. International Fusion Energy Research Centre (IFERC).

IFERC consists of activities on DEMO design R&D, Computational Simulation and ITER Remote Experimentation towards the realisation of DEMO.

3. Satellite Tokamak Programme

The JT-60 tokamak will be upgraded to an advanced superconducting tokamak JT-60 SA, and be exploited under the framework of this Agreement as a "satellite" facility to ITER. The Satellite Tokamak Programme is expected to develop operating scenarios and address key physics issues for an efficient start up of ITER experimentation and for research towards DEMO.

Jennifer Hay | alfa
Further information:
http://www.iter.org

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>