Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japan and EURATOM partnership for joint implementation of fusion energy research

12.02.2007
On February 5, 2007 in Tokyo, the Minister for Foreign Affairs of Japan and the Ambassador of the Delegation of the European Commission to Japan signed the Agreement between the Government of Japan and the European Atomic Energy Community for the Joint Implementation of the Broader Approach Activities in the Field of Fusion Energy Research in Tokyo.

This so-called "Broader Approach" materialises the privileged partnership of Japan and EURATOM in the field of fusion energy research. Japan and EURATOM will work together on three individual projects under this Agreement to accelerate the realisation of fusion energy as a clean and sustainable energy source for the 21st century. The Agreement will have a duration of ten years.

The signature of this Agreement marks another milestone in the strong cooperation between Japan and EURATOM in the field of fusion energy research. This co-operation aims at complementing the ITER Project, the international project on fusion energy at an early realisation of fusion energy for peaceful purposes, by carrying out R&D and developing some advanced technologies for the future demonstration power reactor (DEMO).

Welcoming the signature of the Agreement, the Director General Nominee of the ITER Organization, Mr Kaname Ikeda said: “ITER and the Broader Approach, together with the current level of fusion research being undertaken world-wide, represent a big step towards the realisation of fusion power”.

The three large research projects will be undertaken in Japan under the framework of this Agreement. These projects are closely related to the implementation of the ITER Project and will be on a time frame compatible with the ITER construction phase. The first two projects will be carried out at Rokkasho, Aomori and the third project will be carried out at Naka, Ibaraki. The participation in each research project will be open to the other ITER Parties.

1. Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility (IFMIF/EVEDA).

The future realisation of fusion energy will require materials which have endurance and show low radioactivity against the exposure to the harsh thermal and irradiation conditions inside a fusion reactor. IFMIF will allow testing and qualification of advanced materials in the environment conditions of a future fusion power reactor. The Engineering Validation and Design Activities aim at producing a detailed, complete and fully integrated engineering design of IFMIF.

2. International Fusion Energy Research Centre (IFERC).

IFERC consists of activities on DEMO design R&D, Computational Simulation and ITER Remote Experimentation towards the realisation of DEMO.

3. Satellite Tokamak Programme

The JT-60 tokamak will be upgraded to an advanced superconducting tokamak JT-60 SA, and be exploited under the framework of this Agreement as a "satellite" facility to ITER. The Satellite Tokamak Programme is expected to develop operating scenarios and address key physics issues for an efficient start up of ITER experimentation and for research towards DEMO.

Jennifer Hay | alfa
Further information:
http://www.iter.org

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>