Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japan and EURATOM partnership for joint implementation of fusion energy research

12.02.2007
On February 5, 2007 in Tokyo, the Minister for Foreign Affairs of Japan and the Ambassador of the Delegation of the European Commission to Japan signed the Agreement between the Government of Japan and the European Atomic Energy Community for the Joint Implementation of the Broader Approach Activities in the Field of Fusion Energy Research in Tokyo.

This so-called "Broader Approach" materialises the privileged partnership of Japan and EURATOM in the field of fusion energy research. Japan and EURATOM will work together on three individual projects under this Agreement to accelerate the realisation of fusion energy as a clean and sustainable energy source for the 21st century. The Agreement will have a duration of ten years.

The signature of this Agreement marks another milestone in the strong cooperation between Japan and EURATOM in the field of fusion energy research. This co-operation aims at complementing the ITER Project, the international project on fusion energy at an early realisation of fusion energy for peaceful purposes, by carrying out R&D and developing some advanced technologies for the future demonstration power reactor (DEMO).

Welcoming the signature of the Agreement, the Director General Nominee of the ITER Organization, Mr Kaname Ikeda said: “ITER and the Broader Approach, together with the current level of fusion research being undertaken world-wide, represent a big step towards the realisation of fusion power”.

The three large research projects will be undertaken in Japan under the framework of this Agreement. These projects are closely related to the implementation of the ITER Project and will be on a time frame compatible with the ITER construction phase. The first two projects will be carried out at Rokkasho, Aomori and the third project will be carried out at Naka, Ibaraki. The participation in each research project will be open to the other ITER Parties.

1. Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility (IFMIF/EVEDA).

The future realisation of fusion energy will require materials which have endurance and show low radioactivity against the exposure to the harsh thermal and irradiation conditions inside a fusion reactor. IFMIF will allow testing and qualification of advanced materials in the environment conditions of a future fusion power reactor. The Engineering Validation and Design Activities aim at producing a detailed, complete and fully integrated engineering design of IFMIF.

2. International Fusion Energy Research Centre (IFERC).

IFERC consists of activities on DEMO design R&D, Computational Simulation and ITER Remote Experimentation towards the realisation of DEMO.

3. Satellite Tokamak Programme

The JT-60 tokamak will be upgraded to an advanced superconducting tokamak JT-60 SA, and be exploited under the framework of this Agreement as a "satellite" facility to ITER. The Satellite Tokamak Programme is expected to develop operating scenarios and address key physics issues for an efficient start up of ITER experimentation and for research towards DEMO.

Jennifer Hay | alfa
Further information:
http://www.iter.org

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>