Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gasoline from plastic packs

22.01.2007
A litre of gasoline can be obtained from a kilogram of old plastic sachets by appying a technology being developed by the specialists of the D.I. Mendeleev Russian Chemical-Engineering University.

This is one of unique examples how the scientists can use a material initially made of petroleum to get if not oil per se again but the product of petroleum refining - engine fuel.

“The idea of carbonic waste processing into carbohydrates is certainly no new news, says project manager Valery Shvets, Doctor of Chemistry, Professor. For example, two plants – a pilot one and an industrial-scale plant - have recently started operating in the US to process turkey factory wastes, mainly skin, feather and grease, into engine fuel. We, for our part, decided to focus our efforts on obtaining gasoline mainly from man-caused carbonic wastes – such as polyethylene, polypropylene, polystyrene and polyethylene terephthalate wastes. And we have achieved a lot of progress in this direction.”

The technology suggested by V.F. Shvets and his colleagues is based on catalytic thermal treatment of polymeric materials. Its basic stages are as follows. First, the wastes should be grinded (it is not necessary to wash them) and melted down. Them they should be mixed with the catalyst powder and exposed to thermal destruction, simply speaking –kept for some time in the reactor at a definite temperature and pressure.

The catalyst composition is not discussed by the researchers in public press – it is being patented now. It is only known that these are grinded wastes of a single production. Further, the liquid hydrocarbon fraction, which is practically gasoline, is topped and collected from the obtained mass. The authors suggest that gaseous decomposition products should be used as fuel: partly in the same production to ensure the required treatment process temperature, and the remainder – in any other process where fuel gases are needed.

The plant’s working model, or more precisely – a prototype model, is installed on the laboratory desk and functions duly. The plant allows to produce a liter of gasoline and a little fuel gas from a kilogram of polyethylene garbage (the petrol fraction content in the products of treatment reaches 90 percent). The waste represents black viscous substance resembling tar, saturated by the catalyst powder. There remains about a table-spoon amount of it per liter of gasoline. In principle, this product can also be used or burned down – then catalyst can be returned into the process.

Now the researchers continue the work in several directions at once. On the one hand, the reactor for the industry should be large, so scaling is to be performed, however, the authors will not be able to cope with this task independently – they will need to work jointly with production workers. On the other hand, the researchers are striving to make the process continuous, and they have made a lot of progress in this direction. And finally, one of the tasks is to develop a similar technology for processing animal and phytogenic wastes - meat-processing and poultry factory wastes. The US researchers have patented their technology and of course did not reveal the know-how. But the Russian chemists are sure: anything devised and made by one person can be invented by another person and even in a better way. Judging by the results already achieved, this is not beyond their powers.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>