Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gasoline from plastic packs

22.01.2007
A litre of gasoline can be obtained from a kilogram of old plastic sachets by appying a technology being developed by the specialists of the D.I. Mendeleev Russian Chemical-Engineering University.

This is one of unique examples how the scientists can use a material initially made of petroleum to get if not oil per se again but the product of petroleum refining - engine fuel.

“The idea of carbonic waste processing into carbohydrates is certainly no new news, says project manager Valery Shvets, Doctor of Chemistry, Professor. For example, two plants – a pilot one and an industrial-scale plant - have recently started operating in the US to process turkey factory wastes, mainly skin, feather and grease, into engine fuel. We, for our part, decided to focus our efforts on obtaining gasoline mainly from man-caused carbonic wastes – such as polyethylene, polypropylene, polystyrene and polyethylene terephthalate wastes. And we have achieved a lot of progress in this direction.”

The technology suggested by V.F. Shvets and his colleagues is based on catalytic thermal treatment of polymeric materials. Its basic stages are as follows. First, the wastes should be grinded (it is not necessary to wash them) and melted down. Them they should be mixed with the catalyst powder and exposed to thermal destruction, simply speaking –kept for some time in the reactor at a definite temperature and pressure.

The catalyst composition is not discussed by the researchers in public press – it is being patented now. It is only known that these are grinded wastes of a single production. Further, the liquid hydrocarbon fraction, which is practically gasoline, is topped and collected from the obtained mass. The authors suggest that gaseous decomposition products should be used as fuel: partly in the same production to ensure the required treatment process temperature, and the remainder – in any other process where fuel gases are needed.

The plant’s working model, or more precisely – a prototype model, is installed on the laboratory desk and functions duly. The plant allows to produce a liter of gasoline and a little fuel gas from a kilogram of polyethylene garbage (the petrol fraction content in the products of treatment reaches 90 percent). The waste represents black viscous substance resembling tar, saturated by the catalyst powder. There remains about a table-spoon amount of it per liter of gasoline. In principle, this product can also be used or burned down – then catalyst can be returned into the process.

Now the researchers continue the work in several directions at once. On the one hand, the reactor for the industry should be large, so scaling is to be performed, however, the authors will not be able to cope with this task independently – they will need to work jointly with production workers. On the other hand, the researchers are striving to make the process continuous, and they have made a lot of progress in this direction. And finally, one of the tasks is to develop a similar technology for processing animal and phytogenic wastes - meat-processing and poultry factory wastes. The US researchers have patented their technology and of course did not reveal the know-how. But the Russian chemists are sure: anything devised and made by one person can be invented by another person and even in a better way. Judging by the results already achieved, this is not beyond their powers.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>