Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gasoline from plastic packs

22.01.2007
A litre of gasoline can be obtained from a kilogram of old plastic sachets by appying a technology being developed by the specialists of the D.I. Mendeleev Russian Chemical-Engineering University.

This is one of unique examples how the scientists can use a material initially made of petroleum to get if not oil per se again but the product of petroleum refining - engine fuel.

“The idea of carbonic waste processing into carbohydrates is certainly no new news, says project manager Valery Shvets, Doctor of Chemistry, Professor. For example, two plants – a pilot one and an industrial-scale plant - have recently started operating in the US to process turkey factory wastes, mainly skin, feather and grease, into engine fuel. We, for our part, decided to focus our efforts on obtaining gasoline mainly from man-caused carbonic wastes – such as polyethylene, polypropylene, polystyrene and polyethylene terephthalate wastes. And we have achieved a lot of progress in this direction.”

The technology suggested by V.F. Shvets and his colleagues is based on catalytic thermal treatment of polymeric materials. Its basic stages are as follows. First, the wastes should be grinded (it is not necessary to wash them) and melted down. Them they should be mixed with the catalyst powder and exposed to thermal destruction, simply speaking –kept for some time in the reactor at a definite temperature and pressure.

The catalyst composition is not discussed by the researchers in public press – it is being patented now. It is only known that these are grinded wastes of a single production. Further, the liquid hydrocarbon fraction, which is practically gasoline, is topped and collected from the obtained mass. The authors suggest that gaseous decomposition products should be used as fuel: partly in the same production to ensure the required treatment process temperature, and the remainder – in any other process where fuel gases are needed.

The plant’s working model, or more precisely – a prototype model, is installed on the laboratory desk and functions duly. The plant allows to produce a liter of gasoline and a little fuel gas from a kilogram of polyethylene garbage (the petrol fraction content in the products of treatment reaches 90 percent). The waste represents black viscous substance resembling tar, saturated by the catalyst powder. There remains about a table-spoon amount of it per liter of gasoline. In principle, this product can also be used or burned down – then catalyst can be returned into the process.

Now the researchers continue the work in several directions at once. On the one hand, the reactor for the industry should be large, so scaling is to be performed, however, the authors will not be able to cope with this task independently – they will need to work jointly with production workers. On the other hand, the researchers are striving to make the process continuous, and they have made a lot of progress in this direction. And finally, one of the tasks is to develop a similar technology for processing animal and phytogenic wastes - meat-processing and poultry factory wastes. The US researchers have patented their technology and of course did not reveal the know-how. But the Russian chemists are sure: anything devised and made by one person can be invented by another person and even in a better way. Judging by the results already achieved, this is not beyond their powers.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>