Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Step on the gas -- New fuel cell design adds control, reduces complexity

18.01.2007
When Princeton University engineers want to increase the power output of their new fuel cell, they just give it a little more gas – hydrogen gas, to be exact.

This simple control mechanism, which varies the flow of hydrogen fuel to control the power generated, was previously thought impossible and is a potentially major development in fuel cell technology.

The secret of their success is a system in which the fuel input itself changes the size of the reaction chamber, and therefore the amount of power produced. The breakthrough design also adds to the understanding of water management in fuel cells – one of the major obstacles to large-scale deployment of the technology in automobiles.

"It's almost so simple that it shouldn't work, but it does," said Jay Benziger, a Princeton professor of chemical engineering. Benziger developed the technique with Claire Woo, who graduated from Princeton in 2006 and is now pursuing a Ph.D. at the University of California, Berkeley. They will publish their findings in the February issue of the journal Chemical Engineering Science.

The first applications of their design are likely to be in small machines such as lawn mowers, the researchers said. The machines would be easy to use, incorporating a design similar to the familiar acceleration systems of cars that use a pedal to increase the flow of fuel and the power output. More important, Benziger said, the use of fuel cells in lawn care equipment would cut down on a major source of greenhouse gases, especially as emissions from these machines are not currently regulated.

At the most basic level, all fuel cells work by combining hydrogen with oxygen in a reaction that generates electricity, water and heat. In the Princeton system, some of the water produced as a by-product collects in a layer at the bottom of the reaction chamber, while the rest drains to an external tank. By varying the height of the water level in the chamber, Benziger and Woo are able to enlarge or shrink the reaction chamber.

For example, an increased flow of hydrogen into the chamber pushes more water out of the system, lowering the water level and increasing the space available for the reaction to take place. Similarly, a decreased flow of hydrogen causes the pressure inside the chamber to drop, drawing some of the water from the tank back into the system and shrinking the reaction chamber.

The water at the bottom of the chamber also serves to maintain the needed humidity for the fuel cell reaction to take place. This patented "auto-humidifying" design demonstrates an innovative use for the water produced during the reaction, which causes problems in most fuel cell designs.

Conventional fuel cells feature a complicated network of serpentine channels to combine the gases, maintain the appropriate humidity levels and eliminate water from the system. Often, droplets of water clog the narrow channels, leading to inefficient and irregular power production. The Princeton system mixes the gases via diffusion in a simple reaction chamber and relies on gravity to drain the water produced.

Benziger and Woo's reaction chamber is effectively sealed by the water at the bottom of the tank. By preventing fuel from leaving the system, this design ensures that the gases remain in the reaction chamber until they combine. Most traditional fuel cells repeatedly run hydrogen and oxygen through an open reaction chamber, converting only about 30 to 40 percent of the fuel at each pass. Since the Princeton system is closed, 100 percent of the fuel can be used with no need for a large and expensive fuel recycling system.

Hilary Parker | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Power and Electrical Engineering:

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>