Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Step on the gas -- New fuel cell design adds control, reduces complexity

18.01.2007
When Princeton University engineers want to increase the power output of their new fuel cell, they just give it a little more gas – hydrogen gas, to be exact.

This simple control mechanism, which varies the flow of hydrogen fuel to control the power generated, was previously thought impossible and is a potentially major development in fuel cell technology.

The secret of their success is a system in which the fuel input itself changes the size of the reaction chamber, and therefore the amount of power produced. The breakthrough design also adds to the understanding of water management in fuel cells – one of the major obstacles to large-scale deployment of the technology in automobiles.

"It's almost so simple that it shouldn't work, but it does," said Jay Benziger, a Princeton professor of chemical engineering. Benziger developed the technique with Claire Woo, who graduated from Princeton in 2006 and is now pursuing a Ph.D. at the University of California, Berkeley. They will publish their findings in the February issue of the journal Chemical Engineering Science.

The first applications of their design are likely to be in small machines such as lawn mowers, the researchers said. The machines would be easy to use, incorporating a design similar to the familiar acceleration systems of cars that use a pedal to increase the flow of fuel and the power output. More important, Benziger said, the use of fuel cells in lawn care equipment would cut down on a major source of greenhouse gases, especially as emissions from these machines are not currently regulated.

At the most basic level, all fuel cells work by combining hydrogen with oxygen in a reaction that generates electricity, water and heat. In the Princeton system, some of the water produced as a by-product collects in a layer at the bottom of the reaction chamber, while the rest drains to an external tank. By varying the height of the water level in the chamber, Benziger and Woo are able to enlarge or shrink the reaction chamber.

For example, an increased flow of hydrogen into the chamber pushes more water out of the system, lowering the water level and increasing the space available for the reaction to take place. Similarly, a decreased flow of hydrogen causes the pressure inside the chamber to drop, drawing some of the water from the tank back into the system and shrinking the reaction chamber.

The water at the bottom of the chamber also serves to maintain the needed humidity for the fuel cell reaction to take place. This patented "auto-humidifying" design demonstrates an innovative use for the water produced during the reaction, which causes problems in most fuel cell designs.

Conventional fuel cells feature a complicated network of serpentine channels to combine the gases, maintain the appropriate humidity levels and eliminate water from the system. Often, droplets of water clog the narrow channels, leading to inefficient and irregular power production. The Princeton system mixes the gases via diffusion in a simple reaction chamber and relies on gravity to drain the water produced.

Benziger and Woo's reaction chamber is effectively sealed by the water at the bottom of the tank. By preventing fuel from leaving the system, this design ensures that the gases remain in the reaction chamber until they combine. Most traditional fuel cells repeatedly run hydrogen and oxygen through an open reaction chamber, converting only about 30 to 40 percent of the fuel at each pass. Since the Princeton system is closed, 100 percent of the fuel can be used with no need for a large and expensive fuel recycling system.

Hilary Parker | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>