Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Stripes' and superconductivity -- Two faces of the same coin?

12.12.2006
Researchers at Brookhaven National Laboratory and Cornell have made a surprising discovery about the behavior of high-temperature superconductors that could be a further step toward understanding how these valuable materials work.

Previous experiments have shown that in high-temperature superconductors known as cuprates, electrons bind together in pairs. The energy required to pull a pair apart -- called the energy gap -- is different in different directions; a plot of energy vs. direction forms a cloverleaf pattern. The explanation for this so-called "pseudogap" has so far eluded physicists.

The new work finds that in a cuprate that is not a superconductor at any temperature the same cloverleaf-shaped energy gap appears. The surprise for physicists is that the same materials in two very different states apparently have identical energy-gap structures.

"This may provide a key to understanding the superconducting phenomenon," said J.C. Séamus Davis, Cornell professor of physics, who collaborated in the work with Brookhaven physicist Tonica Valla. "This is the first time that it has been possible to measure the electronic structure of this very important material. The big surprise is that we go to this state where it's not superconducting, and we measure the electronic structure, and lo and behold, it's the same [as the superconductor]."

Their experiments were described Nov. 16 in the online journal Science Express and will appear in a future print edition of Science.

Superconductors conduct electricity with virtually no resistance. The phenomenon was first discovered in materials cooled to near absolute zero by immersion in liquid helium. Certain oxides of copper called cuprates that have been "doped" with small amounts of other elements become superconducting at temperatures up to 134 kelvins (degrees above absolute zero) or more, depending on pressure. These materials can be cooled with much less expensive liquid nitrogen and are in wide use in industry.

"Doping" disrupts the crystal structure of the copper oxide, creating "holes" where electrons ought to be, and this somehow facilitates superconductivity. Physicists have been puzzled by the fact that at a certain low level of doping, many cuprates cease to superconduct, yet at levels above and below this, superconductivity returns.

Valla, Davis and co-workers studied a version of a cuprate known as LBCO that ceases to superconduct when just one-eighth of its electrons have been removed. Previous measurements have shown that in this material the electrons arrange themselves in alternating "stripes" about four atoms wide, and this somehow seems to inhibit superconductivity.

The researchers studied samples cooled to near absolute zero -- where the material is still not a superconductor -- to observe the simplest or "ground" state. This was, the researchers said, the first measurement of the electronic structure of a cuprate in which the material's superconductivity did not interfere.

Valla's group measured the energy and momentum of the electrons in the non-superconducting LBCO by photoemission spectroscopy, in which X-rays are used to knock electrons off the surface for measurement. Davis and colleagues at Cornell studied a piece of the same crystal with a specially built scanning tunneling microscope so sensitive that it can detect the arrangement of electrons in the material. They were amazed to find that in both kinds of measurements, all low-energy electronic signatures were the same in the "striped" material as in superconducting cuprates.

Valla speculated that the difference lies in the way electrons form pairs, that they might sometimes pair too strongly for superconductivity to work. Davis declined to speculate, simply saying, "The electronic structure we observe ... appears to indicate that the 'striped' state is intimately related to the superconducting state -- perhaps they are two sides of the same coin."

It will be up to theorists, he said, to revise their theories to account for these results.

The research was supported by the U.S. Department of Energy, the Office of Naval Research and Cornell.

| EurekAlert!
Further information:
http://www.cornell.edu

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>