Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's Fastest Transistor Approaches Goal Of Terahertz Device

12.12.2006
Scientists at the University of Illinois at Urbana-Champaign have again broken their own speed record for the world's fastest transistor.

With a frequency of 845 gigahertz, their latest device is approximately 300 gigahertz faster than transistors built by other research groups, and approaches the goal of a terahertz device.

Made from indium phosphide and indium gallium arsenide, "the new transistor utilizes a pseudomorphic grading of the base and collector regions," said Milton Feng, the Holonyak Chair Professor of Electrical and Computer Engineering at Illinois. "The compositional grading of these components enhances the electron velocity, hence, reduces both current density and charging time."

With their latest device, Feng and his research group have taken the transistor to a new range of high-speed operation, bringing the "Holy Grail" of a terahertz transistor finally within reach. Faster transistors translate into faster computers, more flexible and secure wireless communications systems, and more effective combat systems.

In addition to using pseudomorphic material construction, the researchers also refined their fabrication process to produce tinier transistor components. For example, the transistor's base is only 12.5 nanometers thick (a nanometer is one billionth of a meter, or about 10,000 times smaller than the width of a human hair).

"By scaling the device vertically, we have reduced the distance electrons have to travel, resulting in an increase in transistor speed," said graduate student William Snodgrass, who will describe the new device at the International Electronics Device Meeting in San Francisco, Dec. 11-13. "Because the size of the collector has also been reduced laterally, the transistor can charge and discharge faster."

Operated at room temperature (25 degrees Celsius), the transistor speed is 765 gigahertz. Chilled to minus 55 degrees Celsius, the speed increases to 845 gigahertz.

Feng, Snodgrass and graduate student Walid Hafez (now at Intel Corp.) fabricated the high-speed device in the university's Micro and Nanotechnology Laboratory.

In addition to further increasing the transistor speed, Feng wants to reduce the current density even more, which will reduce junction temperature and improve device reliability.

The Defense Advanced Research Projects Agency funded the work.

Editor's note: To reach Milton Feng, call 217-333-8080; e-mail: mfeng@uiuc.edu.

James E. Kloeppel | University of Illinois
Further information:
http://www.news.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>