Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond silicon: MIT demonstrates new transistor technology

11.12.2006
MIT engineers have demonstrated a technology that could introduce an important new phase of the microelectronics revolution that has already brought us iPods, laptops and much more.

The work will be presented at the IEEE International Electron Devices Meeting Dec. 11-13 by Dae-Hyun Kim. Kim is a postdoctoral associate in the laboratory of Jesus del Alamo, an MIT professor of electrical engineering and computer science and member of MIT's Microsystems Technology Laboratories (MTL).

"Unless we do something very radical pretty soon, the microelectronics revolution that has enriched our lives in so many different ways might come to a screeching halt," said del Alamo.

The problem? Engineers estimate that within the next 10 to 15 years we will reach the limit, in terms of size and performance, of the silicon transistors key to the industry. "Each of us has several billion transistors working on our behalf every day in our phone, laptop, iPod, car, kitchen and more," del Alamo noted.

As a result, del Alamo's lab and others around the world are working on new materials and technologies that may be able to reach beyond the limits of silicon. "We are looking at new semiconductor materials for transistors that will continue to improve in performance, while devices get smaller and smaller," del Alamo said.

One such material del Alamo and his students at the MTL are investigating is a family of semiconductors known as III-V compound semiconductors. Unlike silicon, these are composite materials. A particularly hot prospect is indium gallium arsenide, or InGaAs, a material in which electrons travel many times faster than in silicon. As a result, it should be possible to make very small transistors that can switch and process information very quickly.

Del Alamo's group recently demonstrated this by fabricating InGaAs transistors that can carry 2.5 times more current than state-of-the-art silicon devices. More current is the key to faster operation. In addition, each InGaAs transistor is only 60 nanometers, or billionths of a meter, long. That's similar to the most advanced 65-nanometer silicon technology available in the world today.

"The 60-nanometer InGaAs quantum-well transistor demonstrated by Professor del Alamo's group shows some exciting results at low supply voltage (e.g. 0.5V) and is a very important research milestone," said Robert Chau, senior fellow and director of transistor research and nanotechnology at Intel, a sponsor of the work.

Del Alamo notes, however, that InGaAs transistor technology is still in its infancy. Some of the challenges include manufacturing transistors in large quantities, because InGaAs is more prone to breakage than silicon. But del Alamo expects prototype InGaAs microdevices at the required dimensions to be developed over the next two years and the technology to take off in a decade or so.

"With more work, this semiconductor technology could greatly surpass silicon and allow us to continue the microelectronics revolution for years to come," del Alamo said.

In addition to Intel, this research is sponsored by the Microelectronics Advanced Research Corporation. The MIT transistors were fabricated by pulling together the capabilities of three MIT laboratories: the Microsystems Technology Laboratories, the Scanning-Electron-Beam Lithography Facility and the Nanostructures Laboratory. Del Alamo notes that one reason for the exceptional performance of these transistors is the high quality of the semiconductor material, which was prepared by MBE Technology of Singapore.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>