Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The power of one: A simpler, cheaper method for cell fusion

07.12.2006
It's not easy to make one plus one equal one.

But biological engineer Chang Lu has done just that with a new and cheaper method to electrically fuse cells — a vital technology for studying stem cells, creating clones and finding disease antibodies.

"The only current method for electrofusion requires a very expensive and specialized electrical pulse generator," said Lu, a professor of agricultural and biological engineering at Purdue University. "My device uses constant DC voltage and would enable researchers to fuse one pair of cells at a time."

Electrofusion — the process of using electric shocks to fuse two or more living cells — is a growing technology with a wide variety of applications in research, biotechnology and medicine. The technique is integral to stem cell research, where it affords researchers greater insight into how genes guide protein synthesis. It also may be used to create large quantities of different disease-specific antibodies and has helped scientists clone mammals.

The current technique for electrofusion requires a pricey electrical pulse-generator, which could cost as much as $13,000. Lu's technology, on the other hand, uses a $100 DC power supply, which, unlike the specialized generator, can be used to power other laboratory equipment. And because of its microscale dimensions, Lu said his technology requires significantly smaller sample volumes.

"This could be very important," he said. "For example, if you had to supply cells from your own body or from another live organism, you would want to take as few as possible."

Lu's device consists of fluid-filled channels inside a tiny microchip. Prior to fusion, cells are engineered to bond to one another by using a minor chemical treatment. Cells are first placed in an aqueous chamber within the chip, where they pair off. In contact with one another but not yet fused, the cells flow towards the only exit, which is a miniscule gap that channels electricity from one pole to the other. Passing through this narrow section, cells are subjected to a strong electrical field that causes them to become destabilized and fuse together.

In one of electrofusion's applications, scientists can fuse antibody-producing cells from the spleen (beta cells) with cancer cells in order to create a virtually immortal, antibody-producing hybrid, called a hybridoma. By manipulating the beta cells prior to fusion, scientists can create thousands of different hybridomas that produce antibodies effective against different viruses and diseases like cancer.

Lu's research regarding the development and use of this technology was published online Monday (Dec. 4) in the journal Applied Physics Letters and is scheduled to appear in print later this month. Graduate student Jun Wang was a co-author.

One downside to the current technique for electrofusion is that researchers have relatively little control over how many cells they fuse at once; the technique works by aligning an uncertain number of cells along an electrical field before zapping them with pulses of electricity. Lu's technology is more precise.

"In my device, the narrow section in the microfluidic channel is so small that only two to three cells fit into it," Lu said.

Lu said he believes that his device may be developed to have a higher throughput than current methods. Although Lu's technology currently fuses single pairs at once, it may be expanded so that multiple devices simultaneously fuse cells in parallel.

"In time, this could drastically increase the rate of cell fusion," he said.

Lu has shown that his technology has a success rate comparable to current technology; about 30 percent to 40 percent of the cells are properly fused when the operational parameters were tuned up.

"We are not saying that our technology is necessarily better, but it is definitely cheaper and has other benefits," he said. "Hopefully, with our technology many more scientists will be able to experiment with the procedure. I believe that could open up a lot of exciting research opportunities."

Lu demonstrated the efficacy of his device using Chinese hamster ovary cells, which were chemically engineered to link prior to fusion. He said his technology could be developed to fuse different types of cells in the future.

Purdue's Research Foundation provided funding for Lu's research, and Lu has submitted a U.S. patent application based on the technique. He plans to continue to his work on the technology at some point in the future.

Douglas M. Main | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Molecular switch will facilitate the development of pioneering electro-optical devices
24.05.2018 | Technische Universität München

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>