Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT math model could aid natural gas production

16.11.2006
MIT engineers have developed a mathematical model that could help energy companies produce natural gas more efficiently and ensure a more reliable supply of this valuable fuel.

The researchers are now collaborating with experts at Shell to apply the model to a natural gas production system in Malaysia.

Natural gas consumption is expected to increase dramatically in the coming decades. However, in the short term, demand for this clean-burning fuel is highly volatile. Because natural gas is difficult to transport and store, energy companies tend to produce it only when they have buyers lined up and transportation capacity available, generally under long-term contracts. As a result, they miss opportunities for short-term sales, and the overall availability of natural gas is reduced.

Natural gas companies would like to operate their production networks more efficiently and flexibly. But operators can be overwhelmed by the sheer number of choices to be made and obligations to be met under supply contracts with customers and facility- and production-sharing agreements with other companies.

According to Professor Paul I. Barton of the Department of Chemical Engineering, the only way for a company to optimize such a system-that is, to operate it so as to best meet all obligations, objectives and constraints-is to formulate it as a mathematical problem and solve it.

"If there were just one or two decisions to make, an engineer could do it," he said. "But when you've got 20 valves to set and 50 different constraints to satisfy, it's impossible for a person to see. Computer procedures can take all of that into account."

Barton and chemical engineering graduate student Ajay Selot have spent the past two years developing a mathematical model to help guide operators' decisions one to three months in advance. The model focuses on the "upstream supply chain," that is, the system from the natural gas reservoirs to bulk consumers such as power plants, utility companies and liquefied natural gas plants.

While other models have focused on optimizing individual subsystems, the new MIT model encompasses the whole system. "Ideally, operators would like to make decisions based on information from the entire system," Selot said.

Based on fundamental physical principles, the researchers' model describes gas flow, pressure and composition inside every pipeline in the network. Equations describe how the flow properties change as the gas passes through each facility along the way. The equations interact so the model can track flows and how they mix throughout the system.

To be useful in the real world, the model must also incorporate-in mathematical terms-the rules from all contracts and agreements. For example, what fraction of production must be shared with other companies?

Operational constraints must also be included. How rapidly can gas be withdrawn from a given well? Further, the company must define its goals, such as maximizing production, minimizing total costs or scheduling facilities in a particular way.

The final challenge is to "solve the model" so that it defines the specific operating choices that will best satisfy the stated obligations, constraints and goals. Standard optimization techniques cannot handle such a large and complex model. Selot is therefore refining and extending standard techniques to solve that problem.

He and Barton are now performing a case study of a natural gas production system in Malaysia operated by Sarawak Shell Berhad, Malaysia (SSB). They are working closely with field engineers at SSB and Shell International Exploration and Production, the Netherlands, to build a realistic representation of the Sarawak system-a challenge, as the system is the product of decades of evolution rather than coordinated planning. All of the system's complexity must be reflected in the mathematical model if it is to be of practical value to the Sarawak planners.

This research was supported by Shell International Exploration and Production through MIT's Laboratory for Energy and the Environment.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>