Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Propane fuel cell passes muster at Exit Glacier Nature Center

13.11.2006
The Alaska Energy Technology Development Laboratory at the University of Alaska Fairbanks recently announced a successful field test of a prototype propane fuel cell.

The cell, manufactured by Massachusetts-based Acumentrics and installed at the Kenai Fjords National Park’s Exit Glacier Nature Center near Seward, ran for more than 1,100 hours straight and did so with no measurable degradation in its efficiency.

“From a technical point of view, it is an important milestone we have achieved here,” said Dennis Witmer, director of AETDL. “It is one step closer to these kinds of fuel cells becoming devices that can be useful in remote locations.”

The fuel cell was part of the original design for the nature center. It was first installed and used in the summer of 2004. Since then, a team of researchers and technicians has been fine-tuning the cell’s performance. In August, Park Service officials fired it up again and it ran until the end of the season.

“It’s not going back to the factory this winter. It has been mothballed for the winter and we plan on starting it up (next) summer,” said Tim Hudson, associate regional director for operations and resources for the National Park Service’s Alaska region. “We like the promise of this technology as a way to replace diesel generators, decrease the possibility of fuel spills and provide a cleaner and quieter source of power.”

The Exit Glacier fuel cell is notable for several reasons. It uses a fuel source--propane--that is more portable and usable in remote areas than the hydrogen or natural gas that usually powers fuel cells. It was also able to adjust its output to deal with fluctuations in power demand at the center, a phenomenon known as load following. And its most recent test run happened in real-world conditions, rather than in a laboratory with controlled power demands and constant monitoring and adjustment by technicians.

In addition, Witmer said, the Exit Glacier cell is able to efficiently generate relatively small amounts of power. A typical diesel generator is most efficient when it is generating 100 kilowatts of electricity, which is about 100 times more than a small building or cell phone tower would use.

“At one kilowatt, there is no convenient, efficient technology … and that is where fuel cells really have a hope of finding some market,” he said.

The reason for the efficiency is the way fuel cells generate electricity. Like a diesel generator, they use a hydrocarbon fuel source. But while the electricity in a traditional generator results from fuel burning and driving a mechanical generation device, the energy in a fuel cell comes from an electrochemical reaction.

“A fuel cell is a device that converts the energy from fuel directly into DC electricity,” Witmer said. “The idea is that the efficiencies are better with the direct electrochemical conversion, especially at lower power levels.”

In addition to generating electricity, the fuel cell provided heat to the nature center during its test run from mid-August to late September.

Witmer said that propane fuel cells are still a long way from being practical for the average consumer. However the successful test at Exit Glacier shows that the technology is meeting technical milestones. If the cells are eventually available to the public, it’s hard to predict all of their potential applications, he said, noting the number of devices that have come about as the internal combustion engine became smaller and more economical.

“Because we don’t have anything really good smaller than a diesel generator, we really don’t know what the demand would be for a one-kilowatt generator,” Witmer said. “That to me is the really exciting thing.”

The Exit Glacier Nature Center fuel cell test is the result of a cooperative agreement between the National Park Service and the Arctic Energy Technology Development Laboratory at the University of Alaska Fairbanks. Other funding partners include the U.S. Department of Energy’s National Energy Technology Laboratory, fuel cell manufacturer Acumentrics, the Propane Education and Research Council, fuel cell contractor Energy Alternatives, the Denali Commission and the Alaska Energy Authority.

NOTE TO EDITORS: Dennis Witmer will be available at the 2006 Fuel Cell Seminar in Honolulu, Hawaii Nov. 13-17.

CONTACT: Marmian Grimes, UAF public information officer, at (907) 474-7902 or via e-mail at marmian.grimes@uaf.edu. Dennis Witmer, Arctic Energy Technology Development Laboratory director, at (907) 590-2836 or via e-mail at ffdew@uaf.edu. Tim Hudson, associate regional director for operations and resources at the National Park Service Alaska Region, at (907) 644-3381 or via e-mail at tim_hudson@nps.gov. Jim Buckley, owner, Energy Alternatives, at (907) 227-7191 or via e-mail at jimbuckley@gci.net.

Marmian Grimes | EurekAlert!
Further information:
http://www.uaf.edu

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>