Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Propane fuel cell passes muster at Exit Glacier Nature Center

The Alaska Energy Technology Development Laboratory at the University of Alaska Fairbanks recently announced a successful field test of a prototype propane fuel cell.

The cell, manufactured by Massachusetts-based Acumentrics and installed at the Kenai Fjords National Park’s Exit Glacier Nature Center near Seward, ran for more than 1,100 hours straight and did so with no measurable degradation in its efficiency.

“From a technical point of view, it is an important milestone we have achieved here,” said Dennis Witmer, director of AETDL. “It is one step closer to these kinds of fuel cells becoming devices that can be useful in remote locations.”

The fuel cell was part of the original design for the nature center. It was first installed and used in the summer of 2004. Since then, a team of researchers and technicians has been fine-tuning the cell’s performance. In August, Park Service officials fired it up again and it ran until the end of the season.

“It’s not going back to the factory this winter. It has been mothballed for the winter and we plan on starting it up (next) summer,” said Tim Hudson, associate regional director for operations and resources for the National Park Service’s Alaska region. “We like the promise of this technology as a way to replace diesel generators, decrease the possibility of fuel spills and provide a cleaner and quieter source of power.”

The Exit Glacier fuel cell is notable for several reasons. It uses a fuel source--propane--that is more portable and usable in remote areas than the hydrogen or natural gas that usually powers fuel cells. It was also able to adjust its output to deal with fluctuations in power demand at the center, a phenomenon known as load following. And its most recent test run happened in real-world conditions, rather than in a laboratory with controlled power demands and constant monitoring and adjustment by technicians.

In addition, Witmer said, the Exit Glacier cell is able to efficiently generate relatively small amounts of power. A typical diesel generator is most efficient when it is generating 100 kilowatts of electricity, which is about 100 times more than a small building or cell phone tower would use.

“At one kilowatt, there is no convenient, efficient technology … and that is where fuel cells really have a hope of finding some market,” he said.

The reason for the efficiency is the way fuel cells generate electricity. Like a diesel generator, they use a hydrocarbon fuel source. But while the electricity in a traditional generator results from fuel burning and driving a mechanical generation device, the energy in a fuel cell comes from an electrochemical reaction.

“A fuel cell is a device that converts the energy from fuel directly into DC electricity,” Witmer said. “The idea is that the efficiencies are better with the direct electrochemical conversion, especially at lower power levels.”

In addition to generating electricity, the fuel cell provided heat to the nature center during its test run from mid-August to late September.

Witmer said that propane fuel cells are still a long way from being practical for the average consumer. However the successful test at Exit Glacier shows that the technology is meeting technical milestones. If the cells are eventually available to the public, it’s hard to predict all of their potential applications, he said, noting the number of devices that have come about as the internal combustion engine became smaller and more economical.

“Because we don’t have anything really good smaller than a diesel generator, we really don’t know what the demand would be for a one-kilowatt generator,” Witmer said. “That to me is the really exciting thing.”

The Exit Glacier Nature Center fuel cell test is the result of a cooperative agreement between the National Park Service and the Arctic Energy Technology Development Laboratory at the University of Alaska Fairbanks. Other funding partners include the U.S. Department of Energy’s National Energy Technology Laboratory, fuel cell manufacturer Acumentrics, the Propane Education and Research Council, fuel cell contractor Energy Alternatives, the Denali Commission and the Alaska Energy Authority.

NOTE TO EDITORS: Dennis Witmer will be available at the 2006 Fuel Cell Seminar in Honolulu, Hawaii Nov. 13-17.

CONTACT: Marmian Grimes, UAF public information officer, at (907) 474-7902 or via e-mail at Dennis Witmer, Arctic Energy Technology Development Laboratory director, at (907) 590-2836 or via e-mail at Tim Hudson, associate regional director for operations and resources at the National Park Service Alaska Region, at (907) 644-3381 or via e-mail at Jim Buckley, owner, Energy Alternatives, at (907) 227-7191 or via e-mail at

Marmian Grimes | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>