Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Propane fuel cell passes muster at Exit Glacier Nature Center

13.11.2006
The Alaska Energy Technology Development Laboratory at the University of Alaska Fairbanks recently announced a successful field test of a prototype propane fuel cell.

The cell, manufactured by Massachusetts-based Acumentrics and installed at the Kenai Fjords National Park’s Exit Glacier Nature Center near Seward, ran for more than 1,100 hours straight and did so with no measurable degradation in its efficiency.

“From a technical point of view, it is an important milestone we have achieved here,” said Dennis Witmer, director of AETDL. “It is one step closer to these kinds of fuel cells becoming devices that can be useful in remote locations.”

The fuel cell was part of the original design for the nature center. It was first installed and used in the summer of 2004. Since then, a team of researchers and technicians has been fine-tuning the cell’s performance. In August, Park Service officials fired it up again and it ran until the end of the season.

“It’s not going back to the factory this winter. It has been mothballed for the winter and we plan on starting it up (next) summer,” said Tim Hudson, associate regional director for operations and resources for the National Park Service’s Alaska region. “We like the promise of this technology as a way to replace diesel generators, decrease the possibility of fuel spills and provide a cleaner and quieter source of power.”

The Exit Glacier fuel cell is notable for several reasons. It uses a fuel source--propane--that is more portable and usable in remote areas than the hydrogen or natural gas that usually powers fuel cells. It was also able to adjust its output to deal with fluctuations in power demand at the center, a phenomenon known as load following. And its most recent test run happened in real-world conditions, rather than in a laboratory with controlled power demands and constant monitoring and adjustment by technicians.

In addition, Witmer said, the Exit Glacier cell is able to efficiently generate relatively small amounts of power. A typical diesel generator is most efficient when it is generating 100 kilowatts of electricity, which is about 100 times more than a small building or cell phone tower would use.

“At one kilowatt, there is no convenient, efficient technology … and that is where fuel cells really have a hope of finding some market,” he said.

The reason for the efficiency is the way fuel cells generate electricity. Like a diesel generator, they use a hydrocarbon fuel source. But while the electricity in a traditional generator results from fuel burning and driving a mechanical generation device, the energy in a fuel cell comes from an electrochemical reaction.

“A fuel cell is a device that converts the energy from fuel directly into DC electricity,” Witmer said. “The idea is that the efficiencies are better with the direct electrochemical conversion, especially at lower power levels.”

In addition to generating electricity, the fuel cell provided heat to the nature center during its test run from mid-August to late September.

Witmer said that propane fuel cells are still a long way from being practical for the average consumer. However the successful test at Exit Glacier shows that the technology is meeting technical milestones. If the cells are eventually available to the public, it’s hard to predict all of their potential applications, he said, noting the number of devices that have come about as the internal combustion engine became smaller and more economical.

“Because we don’t have anything really good smaller than a diesel generator, we really don’t know what the demand would be for a one-kilowatt generator,” Witmer said. “That to me is the really exciting thing.”

The Exit Glacier Nature Center fuel cell test is the result of a cooperative agreement between the National Park Service and the Arctic Energy Technology Development Laboratory at the University of Alaska Fairbanks. Other funding partners include the U.S. Department of Energy’s National Energy Technology Laboratory, fuel cell manufacturer Acumentrics, the Propane Education and Research Council, fuel cell contractor Energy Alternatives, the Denali Commission and the Alaska Energy Authority.

NOTE TO EDITORS: Dennis Witmer will be available at the 2006 Fuel Cell Seminar in Honolulu, Hawaii Nov. 13-17.

CONTACT: Marmian Grimes, UAF public information officer, at (907) 474-7902 or via e-mail at marmian.grimes@uaf.edu. Dennis Witmer, Arctic Energy Technology Development Laboratory director, at (907) 590-2836 or via e-mail at ffdew@uaf.edu. Tim Hudson, associate regional director for operations and resources at the National Park Service Alaska Region, at (907) 644-3381 or via e-mail at tim_hudson@nps.gov. Jim Buckley, owner, Energy Alternatives, at (907) 227-7191 or via e-mail at jimbuckley@gci.net.

Marmian Grimes | EurekAlert!
Further information:
http://www.uaf.edu

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>