Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European research network develops novel hydrogen storage materials

09.11.2006
The Marie Curie Research Training Network COSY (Complex Solid State Reactions for Energy Efficient Hydrogen Storage) was launched on November, 1st, 2006.

The network, which receives €2.5 million in funding from the European Union, was established to develop new types of reactive light-metal hydride composites that can be used for more effective hydrogen storage. During the project’s four-year duration, GKSS-Forschungszentrum Geesthacht will coordinate the collaboration between the 13 participating research institutes from seven European countries.

It’s all a question of storage

Hydrogen can easily be produced by using renewable sources of energy, which will have to replace fossil fuels once the latter are depleted at some point in the future. However, the use of hydrogen as an environmentally friendly source of energy for mobile devices such as automobiles, laptops and cameras is still hindered by a number of factors, including the excessive size and weight of existing hydrogen storage systems. If it becomes possible to store hydrogen more effectively than is currently the case, the gas would serve as an ideal energy carrier for mobile applications. Over the next four years, the scientists involved in the COSY network will be working to achieve this goal by developing new nano-structured composites of various light-metal hydrides for use as storage materials. “Light-metal hydrides are solid materials that chemically bind hydrogen atoms and release them again when heated,” explains Professor Rüdiger Bormann, Director of the Institute for Materials Research at GKSS-Forschungszentrum Geesthacht and coordinator of COSY. “The ‘reactive hydride composites’ discovered by the scientists at GKSS-Forschungszentrum Geesthacht will allow us to significantly increase the storage density. By storing hydrogen in solids, we can avoid a number of material- and safety-related technological difficulties, such as those encountered during high-pressure storage of gaseous hydrogen or the storage of liquid hydrogen at low temperatures.”

The COSY network aims to prepare and optimise the new reactive hydride composites for use in hydrogen storage systems of mobile applications. To make this possible, the COSY scientists investigate how the light-metal hydrides and hydride composites can be produced economically, characterise the micro- and nano-structures generated during production, evaluate and optimise the thermodynamics and kinetics of the hydrogen absorption and release, and model these processes.

Training of young scientists and international cooperation

In addition to research, the Marie Curie network COSY also focuses on training and further education as well as on the exchange of young scientists throughout Europe. Generally, doctoral candidates at COSY work in at least two of the network’s institutes. In addition to an individualised non-scientific training program, the postgraduates’ curriculum includes research assignments of several weeks’ duration at partner institutes within the network, as well as a series of training workshops on various hydrogen technology topics.

The following countries and institutions take part in the COSY network:

Germany (Leibniz Institute for Solid State and Materials Research Dresden, Forschungszentrum Karlsruhe, GKSS-Forschungszentrum Geesthacht)
United Kingdom (University of Oxford)
France (European Synchrotron Radiation Facility ESRF/Grenoble, Institut National Polytechnique INP/Grenoble, Laboratoire de Réactivité et de Chimie des Solides LRCS/Amiens)
Italy (University of Torino)
Netherlands (Vrije Universiteit Amsterdam, University of Twente)
Switzerland (Empa - Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Hydrogen & Energy, Dübendorf)

Spain (Instituto de Ciencia de Materiales de Sevilla/Seville, University of Barcelona)

Torsten Fischer | alfa
Further information:
http://www.gkss.de
http://www.cosy-net.eu/

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>