Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Car work for quantum mechanics

30.01.2002


A quantum afterburner extracts laser light from vehicle exhaust.


The last leap forward: Otto’s first four stroke engine of 1876.
Courtesy of Deutz Canada Inc.



The hot gases belching out of your car’s exhaust are not just useless waste. They are a laser waiting to happen, says physicist Marlan Scully1.

All you need to harness this potential, suggests Scully, of Texas A&M University in College Station, is a quantum afterburner. This hypothetical modification would use quantum mechanics to boost the engine’s efficiency by clawing back waste heat and turning it into useful energy - laser light.


Scully’s quantum soup-up would involve adding two new parts to an exhaust pipe: a laser and a maser (a kind of laser that emits microwaves rather than visible light). Both would produce radiation as soon as the number of high-energy molecules in the hot gas became abnormally large.

Normally, the higher the energy of excited molecules, the fewer of them there are. But in lasers, there is a population inversion - the gas becomes rich in excited molecules. Excited molecules then lose their energy by emitting it as light.

The quantum afterburner would rely on exhaust molecules being in three different states, like three rungs on an energy ladder. The maser would wring out energy from excited molecules on the second rung, sending them to the bottom rung. This depletion of the second rung would create a population inversion between it and the first rung that would produce laser emission.

In effect, says Scully, the maser would drain some heat from the exhaust gas so that the remainder could be extracted as useful laser emission. In a normal engine, all the heat in the exhaust is disregarded as useless.

Scully and others are now trying to build a real quantum engine, to probe the feasibility of his idea.

Work it

Engine efficiency is an old problem. The scientists who investigated it during the Industrial Revolution created the discipline called thermodynamics, which describes how heat flows from place to place.

In the early nineteenth century, the French engineer Nicholas Léonard Sadi Carnot calculated the maximum work available from an engine in which heating a gas through a cycle of expansion and contraction drives the motion of a piston.

Scully has taken a fresh look at the efficiency of such a cyclical process, not in a Carnot engine, but in an Otto engine. Devised in 1876 by Nikolaus Otto, this system forms the basis of today’s four-stroke internal-combustion engine.

In the Otto engine, a moving piston sucks fuel into a cylinder and then compresses it. The fuel is ignited and expands, pushing the piston outwards. The piston then expels the spent exhaust gases.

References

  1. Scully, M.O.Quantum afterburner: improving the efficiency of an ideal heat engine. Physical Review Letters, 88, 050602, (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>