Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cylinders make circuits spontaneously

30.01.2002


Nanotube grids could make compact computer memories.
© SPL


Carbon nanotubes assemble themselves into electronic grids

Tiny electrical circuits with a single molecule for each wire have been created in the United States1. These grids could replace silicon chips, making computers and memory devices much more compact and powerful than they are today.

The grids comprise carbon nanotubes - long, hollow cylinders of pure carbon a few millionths of a millimetre (nanometres) across and several thousand nanometres long. Depending on how their atoms are arranged, nanotubes act either as metals (like copper wire) or as semiconductors (like silicon).



The grids practically build themselves - just a little encouragement from electrical fields guides them into place. Putting each wire into place individually would be fiddly, time-consuming and expensive.

James Heath, of the University of California, Los Angeles, and colleagues now demonstrate what they predicted four years ago. Namely that if one or both of two wires crossed at right angles are semiconducting, the junction can act like an electronic device such as a diode. And that each device can, in principle, be switched on or off without affecting the others.

This proof of principle raises hopes that a nanotube lattice could form a computer memory, storing one bit of information at each junction2. Being so small, such a circuit could potentially furnish a random-access memory with a storage density around 100,000 times greater than that of a Pentium chip.

Enough rope

Until now, prototype grids had been built from just a few crossed nanotubes, generally by careful manipulation of individual tubes, or by patterning the surface on which they sit. Heath’s team do away with all this.

They disperse the tubes in an organic solvent. Each single-molecule tube sticks to a few others to form a sort of rope. The ropes are 6-20 nanometres thick, up to 20,000 nanometres long, and electrically charged. By applying an electric field across a silicon wafer, the researchers deposit the tubes on the wafer surface, parallel to the field.

Applying another field perpendicular to the first deposits another set of nanotube ropes that cross the first at right angles. The distance between ropes is more or less constant, because electrical charges cause the ropes to repel each other and settle only if far enough from a neighbour. The researchers control this repulsion to adjust the spacing of the grid.


References

  1. Diehl, M. R., Yaliraki, S. N., Beckman, R. A., Barahona, M. & Heath, J. R. Self-assembled, deterministic carbon nanotube wiring networks. Angewandte Chemie International Edition, 41, 353 - 356, (2002)
  2. Rueckes, T.. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 289, 94 - 97, (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>