Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cylinders make circuits spontaneously

30.01.2002


Nanotube grids could make compact computer memories.
© SPL


Carbon nanotubes assemble themselves into electronic grids

Tiny electrical circuits with a single molecule for each wire have been created in the United States1. These grids could replace silicon chips, making computers and memory devices much more compact and powerful than they are today.

The grids comprise carbon nanotubes - long, hollow cylinders of pure carbon a few millionths of a millimetre (nanometres) across and several thousand nanometres long. Depending on how their atoms are arranged, nanotubes act either as metals (like copper wire) or as semiconductors (like silicon).



The grids practically build themselves - just a little encouragement from electrical fields guides them into place. Putting each wire into place individually would be fiddly, time-consuming and expensive.

James Heath, of the University of California, Los Angeles, and colleagues now demonstrate what they predicted four years ago. Namely that if one or both of two wires crossed at right angles are semiconducting, the junction can act like an electronic device such as a diode. And that each device can, in principle, be switched on or off without affecting the others.

This proof of principle raises hopes that a nanotube lattice could form a computer memory, storing one bit of information at each junction2. Being so small, such a circuit could potentially furnish a random-access memory with a storage density around 100,000 times greater than that of a Pentium chip.

Enough rope

Until now, prototype grids had been built from just a few crossed nanotubes, generally by careful manipulation of individual tubes, or by patterning the surface on which they sit. Heath’s team do away with all this.

They disperse the tubes in an organic solvent. Each single-molecule tube sticks to a few others to form a sort of rope. The ropes are 6-20 nanometres thick, up to 20,000 nanometres long, and electrically charged. By applying an electric field across a silicon wafer, the researchers deposit the tubes on the wafer surface, parallel to the field.

Applying another field perpendicular to the first deposits another set of nanotube ropes that cross the first at right angles. The distance between ropes is more or less constant, because electrical charges cause the ropes to repel each other and settle only if far enough from a neighbour. The researchers control this repulsion to adjust the spacing of the grid.


References

  1. Diehl, M. R., Yaliraki, S. N., Beckman, R. A., Barahona, M. & Heath, J. R. Self-assembled, deterministic carbon nanotube wiring networks. Angewandte Chemie International Edition, 41, 353 - 356, (2002)
  2. Rueckes, T.. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 289, 94 - 97, (2002).


PHILIP BALL | © Nature News Service

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>