Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers invent 'flashy' new process to turn soy oil, glucose into hydrogen

06.11.2006
Process could significantly improve the efficiency of fuel production from renewable energy sources

Anyone who's overheated vegetable oil or sweet syrup knows that neither oil nor sugar evaporates--oil smokes and turns brown, sugar turns black, and both leave a nasty film of carbon on the cookware.

Now, a University of Minnesota team has invented a "reactive flash volatilization process" that heats oil and sugar about a million times faster than you can in your kitchen and produces hydrogen and carbon monoxide, a mixture called synthesis gas, or syngas, because it is used to make chemicals and fuels, including gasoline. The new process works 10 to 100 times faster than current technology, with no input of fossil fuels and in reactors at least 10 times smaller than current models. The work could significantly improve the efficiency of fuel production from renewable energy sources. It will be published Nov. 3 in Science.

"It's a way to take cheap, worthless biomass and turn it into useful fuels and chemicals," said team leader Lanny Schmidt, a Regents Professor of chemical engineering and materials science at the university. "Potentially, the biomass could be used cooking oil or even products from cow manure, yard clippings, cornstalks or trees."

One up-and-coming fuel is biodiesel, which is produced from soy oil. Currently, the key step in conversion of the oil to biodiesel requires the addition of methanol, a fossil fuel. The new process skips the biodiesel step and turns oil straight into hydrogen and carbon monoxide gases by heating it to about 1,000 degrees C. About 70 percent of the hydrogen in the oil is converted to hydrogen gas. Similarly, using a nearly saturated solution of glucose in water, the process heats the sugar so fast that it, too, breaks up into syngas instead of its usual products: carbon and water.

A difficulty in turning plant material into usable fuels has been breaking down the chemical bonds in cellulose--the material that gives plant cell walls their stiffness--to liberate simple sugars that can be fermented into ethanol or turned into other fuels. That requires special enzymes and lots of time. But the high heat of the new process breaks those bonds with ease, meaning cellulose and similar plant materials can possibly be used as feedstocks.

Schmidt and his university colleagues--graduate students James Salge, Brady Dreyer and Paul Dauenhauer--have produced a pound of synthesis gas in a day using their small-scale reactor.

Here's how the new process works: The oil and sugar water are sprayed as fine droplets from an automotive fuel injector through a tube onto a ceramic disk made of a catalyst material--the elements rhodium and cerium--that guides the breakup of the feedstock molecules toward the production of syngas and away from water and carbon "gunk." Because the catalytic disk is porous, the syngas passes through it and is collected downstream in the tube. No external heat is needed, because the chemical reactions that produce syngas release enough heat to break up subsequent molecules of oil or sugar.

"The secret is ultrafast flash volatilization [vaporization]," said Schmidt. "It happens here because we vaporize the fuel and mix it with oxygen before it sees the catalyst so it doesn't burn to char. This is potentially 100 times faster than what is currently available to make syngas and hydrogen."

Schmidt gained national attention in February 2004, when a team he headed invented a similar apparatus to produce hydrogen from ethanol.

Mark Cassutt | EurekAlert!
Further information:
http://www.umn.edu

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>