Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U of M researchers invent 'flashy' new process to turn soy oil, glucose into hydrogen

Process could significantly improve the efficiency of fuel production from renewable energy sources

Anyone who's overheated vegetable oil or sweet syrup knows that neither oil nor sugar evaporates--oil smokes and turns brown, sugar turns black, and both leave a nasty film of carbon on the cookware.

Now, a University of Minnesota team has invented a "reactive flash volatilization process" that heats oil and sugar about a million times faster than you can in your kitchen and produces hydrogen and carbon monoxide, a mixture called synthesis gas, or syngas, because it is used to make chemicals and fuels, including gasoline. The new process works 10 to 100 times faster than current technology, with no input of fossil fuels and in reactors at least 10 times smaller than current models. The work could significantly improve the efficiency of fuel production from renewable energy sources. It will be published Nov. 3 in Science.

"It's a way to take cheap, worthless biomass and turn it into useful fuels and chemicals," said team leader Lanny Schmidt, a Regents Professor of chemical engineering and materials science at the university. "Potentially, the biomass could be used cooking oil or even products from cow manure, yard clippings, cornstalks or trees."

One up-and-coming fuel is biodiesel, which is produced from soy oil. Currently, the key step in conversion of the oil to biodiesel requires the addition of methanol, a fossil fuel. The new process skips the biodiesel step and turns oil straight into hydrogen and carbon monoxide gases by heating it to about 1,000 degrees C. About 70 percent of the hydrogen in the oil is converted to hydrogen gas. Similarly, using a nearly saturated solution of glucose in water, the process heats the sugar so fast that it, too, breaks up into syngas instead of its usual products: carbon and water.

A difficulty in turning plant material into usable fuels has been breaking down the chemical bonds in cellulose--the material that gives plant cell walls their stiffness--to liberate simple sugars that can be fermented into ethanol or turned into other fuels. That requires special enzymes and lots of time. But the high heat of the new process breaks those bonds with ease, meaning cellulose and similar plant materials can possibly be used as feedstocks.

Schmidt and his university colleagues--graduate students James Salge, Brady Dreyer and Paul Dauenhauer--have produced a pound of synthesis gas in a day using their small-scale reactor.

Here's how the new process works: The oil and sugar water are sprayed as fine droplets from an automotive fuel injector through a tube onto a ceramic disk made of a catalyst material--the elements rhodium and cerium--that guides the breakup of the feedstock molecules toward the production of syngas and away from water and carbon "gunk." Because the catalytic disk is porous, the syngas passes through it and is collected downstream in the tube. No external heat is needed, because the chemical reactions that produce syngas release enough heat to break up subsequent molecules of oil or sugar.

"The secret is ultrafast flash volatilization [vaporization]," said Schmidt. "It happens here because we vaporize the fuel and mix it with oxygen before it sees the catalyst so it doesn't burn to char. This is potentially 100 times faster than what is currently available to make syngas and hydrogen."

Schmidt gained national attention in February 2004, when a team he headed invented a similar apparatus to produce hydrogen from ethanol.

Mark Cassutt | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>