Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First demonstration of a working invisibility cloak

23.10.2006
A team led by scientists at Duke University's Pratt School of Engineering has demonstrated the first working "invisibility cloak." The cloak deflects microwave beams so they flow around a "hidden" object inside with little distortion, making it appear almost as if nothing were there at all.

Cloaks that render objects essentially invisible to microwaves could have a variety of wireless communications or radar applications, according to the researchers.

The team reported its findings on Thursday, Oct. 19, in Science Express, the advance online publication of the journal Science. The research was funded by the Intelligence Community Postdoctoral Fellowship Program.

The researchers manufactured the cloak using "metamaterials" precisely arranged in a series of concentric circles that confer specific electromagnetic properties. Metamaterials are artificial composites that can be made to interact with electromagnetic waves in ways that natural materials cannot reproduce (http://www.ee.duke.edu/~drsmith/neg_ref_home.htm).

The cloak represents "one of the most elaborate metamaterial structures yet designed and produced," the scientists said. It also represents the most comprehensive approach to invisibility yet realized, with the potential to hide objects of any size or material property, they added.

Earlier scientific approaches to achieving "invisibility" often relied on limiting the reflection of electromagnetic waves. In other schemes, scientists attempted to create cloaks with electromagnetic properties that, in effect, cancel those of the object meant to be hidden. In the latter case, a given cloak would be suitable for hiding only objects with very specific properties.

"By incorporating complex material properties, our cloak allows a concealed volume, plus the cloak, to appear to have properties similar to free space when viewed externally," said David R. Smith, Augustine Scholar and professor of electrical and computer engineering at Duke. "The cloak reduces both an object's reflection and its shadow, either of which would enable its detection."

The team produced the cloak according to electromagnetic specifications determined by a new design theory proposed by Sir John Pendry of Imperial College London, in collaboration with the Duke scientists. The scientists reported that theoretical work in Science earlier this year (http://www.pratt.duke.edu/news/?id=433).

The principles behind the cloaking design, though mathematically rigorous, can be applied in a relatively straightforward way using metamaterials, said cloak designer David Schurig, a research associate in Duke's electrical and computer engineering department (http://www.ece.duke.edu/~dschurig/).

"One first imagines a distortion in space similar to what would occur when pushing a pointed object through a piece of cloth, distorting, but not breaking, any threads," Schurig said. "In such a space, light or other electromagnetic waves would be confined to the warped 'threads' and therefore could not interact with, or 'see,' objects placed inside the resulting hole."

The researchers used a mathematical description of that concept to develop a blueprint for a cloak that mimics the properties of the imagined, warped space, he said.

"You cannot easily warp space, but you can achieve the same effect on electromagnetic fields using materials with the right response," Schurig continued. "The required materials are quite complex, but can be implemented using metamaterial technology."

While the properties of natural materials are determined by their chemistry, the properties of metamaterials depend instead on their physical structure. In the case of the new cloak, that structure consists of copper rings and wires patterned onto sheets of fiberglass composite that are traditionally used in computer circuit boards.

To simplify design and fabrication in the current study, the team set out to develop a small cloak, less than five inches across, that would provide invisibility in two dimensions, rather than three. In essence, the cloak includes strips of metamaterial fashioned into concentric two-dimensional rings, a design that allows its use with a narrow beam of microwave radiation. The precise variations in the shape of copper elements patterned onto their surfaces determine their electromagnetic properties.

The cloak design is unique among metamaterials in its circular geometry and internal structural variation, the researchers said. All other metamaterials have been based on a cubic, or gridlike, design, and most of them have electromagnetic properties that are uniform throughout.

"Unlike other metamaterials, the cloak requires a gradual change in its properties as a function of position," Smith said. "Rather than its material properties being the same everywhere, the cloak's material properties vary from point to point and vary in a very specific way. Achieving that gradient in material properties was a fairly significant design effort."

To assess the cloak's performance, the researchers aimed a microwave beam at a cloak situated between two metal plates inside a test chamber, and used a specialized detecting apparatus to measure the electromagnetic fields that developed both inside and outside the cloak. By examining an animated representation of the data, they found that the wave fronts of the beam separate and flow around the center of the cloak.

"The waves' movement is similar to river water flowing around a smooth rock," Schurig said.

Moreover, the observed physical behavior of the cloak proved to be in "remarkable agreement" with that expected based on a simulated cloak, the researchers said.

Although the new cloak demonstrates the feasibility of the researchers' design, the findings nevertheless represent a "baby step" on the road to actual applications for invisibility, said team member Steven Cummer, a professor of electrical and computer engineering at Duke.

The researchers said they plan to work toward developing a three-dimensional cloak and further perfecting the cloaking effect.

Although the same principles applied to the new microwave cloak might ultimately lead to the production of cloaks that confer invisibility within the visible frequency range, that eventuality remains uncertain, the researchers said.

"It's not yet clear that you're going to get the invisibility that everyone thinks about with Harry Potter's cloak or the Star Trek cloaking device," Smith said.

To make an object literally vanish before a person's eyes, a cloak would have to simultaneously interact with all of the wavelengths, or colors, that make up light, he said. That technology would require much more intricate and tiny metamaterial structures, which scientists have yet to devise.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>