Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State researchers helping to take the natural gas out of ethanol production

28.09.2006
It takes a lot of natural gas to run an ethanol plant. A plant needs steam to liquefy corn starch and heat to distill alcohol and more heat to dry the leftover distillers grains.

Burning natural gas to produce all that heat is the second largest expense at most ethanol plants -- trailing only the cost of the corn used for ethanol production. One estimate says Iowa's annual production of more than one billion gallons of ethanol accounts for about 16 percent of the state's demand for natural gas.

That has Iowa State University researchers working with an Ames company to develop a renewable and cost effective alternative to the natural gas burned by most ethanol plants.

The technology involves partial combustion of biomass -- that could include corn stalks, distillers grains, waste wood or other biorenewables -- to produce a mixture of hydrogen, carbon monoxide, methane and other flammable gases. The resulting mixture is known as producer gas and it can replace natural gas in an ethanol plant's heaters. The producer gas can also be upgraded to what's known as syngas, a mixture that can be converted into high-value transportation fuels, alcohols, hydrogen, ammonia and other chemicals.

Producer gas is made by injecting biomass into a fluidized bed gasifier, a thermal system that pumps air up through a bed of hot sand, creating bubbles and a sand-air pseudo fluid. A reaction between the biomass and the hot sand-air mixture produces flammable gases. The process also generates its own heat to sustain the reaction. It's a system that's reliable, produces few emissions and can be efficiently integrated into a plant's existing natural gas boilers and dryers.

Iowa State researchers Robert C. Brown, the Bergles Professor in Thermal Science and Iowa Farm Bureau Director of the Office of Biorenewables Programs; Ted Heindel, a professor of mechanical engineering; and Francine Battaglia, an associate professor of mechanical engineering, are working with Frontline BioEnergy, an Ames company that produces biomass gasification systems, to study and design a gasifier large enough to produce energy for an ethanol plant. The project is partially supported by a $132,274 grant from the Grow Iowa Values Fund, a state economic development program.

Heindel will work with Nathan Franka, a master's student in mechanical engineering, to observe and measure a fluidized bed in action. They'll use Iowa State's $640,145 X-ray flow visualization facility to see through a test bed that's six inches in diameter. They'll be looking to see what happens inside the fluidized bed when biomass is injected. Heindel will take X-ray radiography, X-ray computed tomography and X-ray stereography images of the flows to measure local conditions.

Battaglia will work with Mirka Deza, a doctoral student in mechanical engineering, to simulate the results of Heindel's tests using computational fluid dynamics. The idea is to run simulations and compare the results with data from the fluidized bed experiments. If the results don't match, the researchers will have to figure out why and the computational models may require modifications. Iowa State's "Lightning," a new high-performance computer capable of 1.8 trillion calculations per second, will provide the computational power for the simulations.

Battaglia said the validated computer models can help Frontline BioEnergy make appropriate design changes. Using the computer models to assist with the design work is much cheaper and faster than building prototypes and running experiments, she said. That's because designers can change parameters and quickly analyze how each change affects performance. Besides, she said, researchers can't look inside a real gasifier to see what's happening.

John Reardon, the research and development manager for Frontline BioEnergy, said the

Iowa State research will provide the company with insights about the mixing that happens inside a fluidized bed gasifier. That will help the company design improved commercial-scale gasifiers capable of processing 300 tons or more of biomass per day. A diagnostic tool developed as part of the research project will also help the company avoid problems in the fluidized bed and maximize the reliability of those gasifiers.

All that can be a boon to an industry that produces an alternative to fossil fuel.

"Using biomass to fuel an ethanol plant can reduce ethanol costs," Reardon said. "It also hedges against volatility in the natural gas market and also doubles the renewable energy ratio of the ethanol product."

Robert C. Brown | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>