Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT engineers work to improve nuclear power generation

26.09.2006
MIT researchers are working on several innovations that could make existing nuclear power plants more efficient and safer to run. These include a new fuel and a way to boost the cooling capability of ordinary water.

With U.S. electricity demand projected to increase by nearly 50 percent over the next 25 years, the Bush administration and others see nuclear power as an increasingly attractive energy option.

Nuclear power has the potential to help make the United States less dependent on foreign fuel and to cut the carbon dioxide emissions that contribute to global warming.

Pilot models of next-generation nuclear plants are being built around the world, but such plants are not likely to produce consumer electricity in the United States for 20 years or more, said Pavel Hejzlar, a principal research scientist in MIT's Department of Nuclear Science and Engineering.

In a nuclear power plant, the fission of uranium atoms provides heat to produce steam for generating electricity. While nuclear plants are already energy-intensive - one pickup-truck full of uranium fuel can supply enough electricity to run a city for a year - Hejzlar and Mujid S. Kazimi, the TEPCO Professor of Nuclear Engineering, professor of mechanical engineering and director of the Center for Advanced Nuclear Energy Systems, wanted to make fuel go even further.

Uranium fuel typically is formed into cylindrical ceramic pellets about a half-inch in diameter. The pellets look like a smooth, black version of food pellets for small animals.

In a three-year project completed recently for the U.S. Department of Energy, Hejzlar and Kazimi teamed up with Westinghouse and other companies to look at how to make a fuel for one kind of reactor, the pressurized water reactor (PWR), 30 percent or more efficient while maintaining or improving safety margins.

They changed the shape of the fuel from solid cylinders to hollow tubes. This added surface area that allows water to flow inside and outside the pellets, increasing heat transfer. The new fuel turned out even better than Hejzlar dared hope. It proved to be easy to manufacture and capable of boosting the plant power output of PWRs by 50 percent.

The next step is to commercialize the fuel concept, which will include testing a limited number of rods filled with the new pellets in an operating reactor and examining the results to ensure the safety and performance of the new fuel.

Water is used in many nuclear reactors to help generate electricity and to ensure safe operation. Now Jacopo Buongiorno, assistant professor of nuclear science and engineering, has come up with a way to change water's thermal properties. This change may contribute to plants' safety while boosting their power density, or the amount of energy they can pump out.

In these reactors, energy released from fission of the fuel's atoms is harnessed as heat in water, which creates steam that drives turbines and produces electricity. In both PWRs and their close cousin, the boiling water reactor (BWR), that steam is turned back into water and reused. Water also is used as a coolant in the reaction process and in safety systems.

The efficiency of PWRs and BWRs is limited to around 33 percent because water can be heated to only a certain temperature and only a certain amount of heat can be taken out of water. If that limit were pushed higher, more heat could be extracted, and the plant would generate more energy at a lower cost.

This may soon be possible, thanks to Buongiorno.

His laboratory works on nanofluids - base fluids such as water interspersed with tiny particles of oxides and metals only billionths of a meter in diameter. Buongiorno's nano-spiked water, transparent but somewhat murky, can remove up to two times more heat than ordinary water, making it an ideal substance for nuclear plants.

The nanoparticles "change some key properties of the way water behaves when it boils," Buongiorno said, improving its heat transfer capabilities.

The spiked water could provide an extra measure of protection in the event of a nuclear meltdown. In a meltdown, molten nuclear fuel sinks to the bottom of the big stainless steel pot containing it, which sits in a cavity of cooling water. If the excess heat is not removed, the molten fuel could breach the pot.

Nanoparticles in the water that cools the outer surface of the vessel raise the amount of heat that can be drawn away from the core, making the plant less susceptible to the negative repercussions of a possible meltdown.

The key issue to be resolved before nanofluids can be used in nuclear plants, Buongiorno said, is the stability of the nanoparticles, which could agglomerate and settle quickly if appropriate chemical and thermal conditions are not carefully maintained.

This work is funded by the Idaho National Laboratory, the nuclear energy vendor AREVA and the MIT Nuclear Reactor Laboratory.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>