Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers developing more powerful solar cells

20.09.2006
Sure, Iowa has its share of rainy, snowy and cloudy days. But look out the window.

"We have a lot of sunlight," said Vikram Dalal as sunshine lit up a late-summer morning and the south-facing windows of his office at Iowa State University's Applied Sciences Complex.

Dalal, the director of Iowa State's Microelectronics Research Center and the Thomas M. Whitney Professor in electrical and computer engineering, has spent more than three decades finding ways for that sunlight to generate more and more electricity. He thinks his latest project can boost the performance of an Iowa company's solar cells by 40 to 50 percent.

Dalal is working with PowerFilm Inc., an Ames company that manufactures thin, flexible solar panels, to improve the performance and stability of the company's solar cells. The project is partially supported by a $63,406 grant from the Grow Iowa Values Fund, a state economic development program. Dalal also has a three-year, $220,000 grant from the National Science Foundation to support a separate but similar research project.

One of the challenges facing solar cell manufacturers is the fact that most cells are manufactured with crystalline silicon, the same material that's used to make computer semiconductors. Because computer parts have so much more value than solar cells, Dalal said there's a shortage of silicon for solar cells.

There is, however, a way to manufacture solar cells using a lot less silicon. Dalal said non-crystalline silicon wafers that are about 2 micrometers thick can replace crystalline wafers that are about 300 micrometers thick. The result is thin solar cells that can absorb lots of light and can be mounted on flexible plastic and other materials. It's the kind of solar cell technology produced by PowerFilm Inc. But the thin cells produce about half the electricity as crystalline silicon. And their performance drops by about another 15 to 20 percent over time.

"That's where we come in," Dalal said.

Iowa State researchers have made discoveries in materials science and plasma chemistry that can improve hydrogen bonding to the silicon in the thin solar cells. And Dalal said that can improve the performance of the cells by about 35 percent and eliminate about 15 percent of the drop in performance.

The discoveries are expected to result in several patents, Dalal said.

They're also expected to be a potential boost to PowerFilm. Dalal said the new techniques should work with essentially the same manufacturing processes and equipment now used by PowerFilm.

Frank Jeffrey, the chief executive officer of PowerFilm, said he'd be happy to see the performance of his company's solar cells jump by even 20 percent.

"It would put us in a much stronger competitive position," Jeffrey said. "If we can increase performance and keep costs in line, that would give us a significant advantage over other people pursuing thin film solar technology right now."

But he acknowledges Dalal's project won't be an easy one.

"It is a significant challenge to get the advancement he'd like to make," Jeffrey said.

But Dalal is looking forward to facing those challenges in his laboratory.

"This is both challenging and interesting work," said Dalal, who started studying solar technology in 1972 when he decided he didn't want to develop smart bomb technology for a defense contractor. "I find it is tremendously interesting, even after 34 years. And it helps humanity instead of killing it, which allows me to sleep at night."

Vikram Dalal | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

nachricht Air pollution casts shadow over solar energy production
27.06.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>