Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers developing more powerful solar cells

20.09.2006
Sure, Iowa has its share of rainy, snowy and cloudy days. But look out the window.

"We have a lot of sunlight," said Vikram Dalal as sunshine lit up a late-summer morning and the south-facing windows of his office at Iowa State University's Applied Sciences Complex.

Dalal, the director of Iowa State's Microelectronics Research Center and the Thomas M. Whitney Professor in electrical and computer engineering, has spent more than three decades finding ways for that sunlight to generate more and more electricity. He thinks his latest project can boost the performance of an Iowa company's solar cells by 40 to 50 percent.

Dalal is working with PowerFilm Inc., an Ames company that manufactures thin, flexible solar panels, to improve the performance and stability of the company's solar cells. The project is partially supported by a $63,406 grant from the Grow Iowa Values Fund, a state economic development program. Dalal also has a three-year, $220,000 grant from the National Science Foundation to support a separate but similar research project.

One of the challenges facing solar cell manufacturers is the fact that most cells are manufactured with crystalline silicon, the same material that's used to make computer semiconductors. Because computer parts have so much more value than solar cells, Dalal said there's a shortage of silicon for solar cells.

There is, however, a way to manufacture solar cells using a lot less silicon. Dalal said non-crystalline silicon wafers that are about 2 micrometers thick can replace crystalline wafers that are about 300 micrometers thick. The result is thin solar cells that can absorb lots of light and can be mounted on flexible plastic and other materials. It's the kind of solar cell technology produced by PowerFilm Inc. But the thin cells produce about half the electricity as crystalline silicon. And their performance drops by about another 15 to 20 percent over time.

"That's where we come in," Dalal said.

Iowa State researchers have made discoveries in materials science and plasma chemistry that can improve hydrogen bonding to the silicon in the thin solar cells. And Dalal said that can improve the performance of the cells by about 35 percent and eliminate about 15 percent of the drop in performance.

The discoveries are expected to result in several patents, Dalal said.

They're also expected to be a potential boost to PowerFilm. Dalal said the new techniques should work with essentially the same manufacturing processes and equipment now used by PowerFilm.

Frank Jeffrey, the chief executive officer of PowerFilm, said he'd be happy to see the performance of his company's solar cells jump by even 20 percent.

"It would put us in a much stronger competitive position," Jeffrey said. "If we can increase performance and keep costs in line, that would give us a significant advantage over other people pursuing thin film solar technology right now."

But he acknowledges Dalal's project won't be an easy one.

"It is a significant challenge to get the advancement he'd like to make," Jeffrey said.

But Dalal is looking forward to facing those challenges in his laboratory.

"This is both challenging and interesting work," said Dalal, who started studying solar technology in 1972 when he decided he didn't want to develop smart bomb technology for a defense contractor. "I find it is tremendously interesting, even after 34 years. And it helps humanity instead of killing it, which allows me to sleep at night."

Vikram Dalal | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
23.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>