Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers developing more powerful solar cells

20.09.2006
Sure, Iowa has its share of rainy, snowy and cloudy days. But look out the window.

"We have a lot of sunlight," said Vikram Dalal as sunshine lit up a late-summer morning and the south-facing windows of his office at Iowa State University's Applied Sciences Complex.

Dalal, the director of Iowa State's Microelectronics Research Center and the Thomas M. Whitney Professor in electrical and computer engineering, has spent more than three decades finding ways for that sunlight to generate more and more electricity. He thinks his latest project can boost the performance of an Iowa company's solar cells by 40 to 50 percent.

Dalal is working with PowerFilm Inc., an Ames company that manufactures thin, flexible solar panels, to improve the performance and stability of the company's solar cells. The project is partially supported by a $63,406 grant from the Grow Iowa Values Fund, a state economic development program. Dalal also has a three-year, $220,000 grant from the National Science Foundation to support a separate but similar research project.

One of the challenges facing solar cell manufacturers is the fact that most cells are manufactured with crystalline silicon, the same material that's used to make computer semiconductors. Because computer parts have so much more value than solar cells, Dalal said there's a shortage of silicon for solar cells.

There is, however, a way to manufacture solar cells using a lot less silicon. Dalal said non-crystalline silicon wafers that are about 2 micrometers thick can replace crystalline wafers that are about 300 micrometers thick. The result is thin solar cells that can absorb lots of light and can be mounted on flexible plastic and other materials. It's the kind of solar cell technology produced by PowerFilm Inc. But the thin cells produce about half the electricity as crystalline silicon. And their performance drops by about another 15 to 20 percent over time.

"That's where we come in," Dalal said.

Iowa State researchers have made discoveries in materials science and plasma chemistry that can improve hydrogen bonding to the silicon in the thin solar cells. And Dalal said that can improve the performance of the cells by about 35 percent and eliminate about 15 percent of the drop in performance.

The discoveries are expected to result in several patents, Dalal said.

They're also expected to be a potential boost to PowerFilm. Dalal said the new techniques should work with essentially the same manufacturing processes and equipment now used by PowerFilm.

Frank Jeffrey, the chief executive officer of PowerFilm, said he'd be happy to see the performance of his company's solar cells jump by even 20 percent.

"It would put us in a much stronger competitive position," Jeffrey said. "If we can increase performance and keep costs in line, that would give us a significant advantage over other people pursuing thin film solar technology right now."

But he acknowledges Dalal's project won't be an easy one.

"It is a significant challenge to get the advancement he'd like to make," Jeffrey said.

But Dalal is looking forward to facing those challenges in his laboratory.

"This is both challenging and interesting work," said Dalal, who started studying solar technology in 1972 when he decided he didn't want to develop smart bomb technology for a defense contractor. "I find it is tremendously interesting, even after 34 years. And it helps humanity instead of killing it, which allows me to sleep at night."

Vikram Dalal | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>