Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercury Rising! Offices to stay cool and save dollars

31.08.2006
A Sydney research team has developed a sun and wind driven ventilation system to cool commercial buildings on the hottest summer days. They hope that the new system will reduce the power requirements of a commercial ventilation system by 15 to 20 per cent.

The new system, designed by Simon Shun, working under the supervision of Associate Professor N.A. Ahmed at the University of New South Wales, relies on solar and wind power when it can. When the wind drops or there is not enough sun, the ventilation system automatically switches to mains electricity. This ensures that the building gets adequate ventilation, and meets the ventilation standards legally required for health, safety and comfort.

Commercial ventilation systems use significant amounts of electrical power, enough to cause blackouts in some states during the hottest summer days. This new system has the potential to assist the wider community by reducing peak energy demands and greenhouse gas emissions.

“At present, devices based on renewable energy cannot be used for constant flow ventilation because of the unpredictable nature of the wind and sun,” Shun says. “The challenge, therefore, was to design a system that uses clean energy to the maximum possible effect. Our device has a smart switching module that selects mains electricity as a back-up power source.”

The new ventilation system was designed from the outset to use both wind and solar energy. A horizontal spin-axis design was developed to increase the effectiveness at which energy was extracted from low-speed wind. This configuration more than doubled the ventilation output at wind speeds between 0 and 10 metres a second. The horizontal axis design gave the team the freedom to introduce advantageous design features that were more difficult to incorporate with conventional configurations. Under zero wind speed conditions, an electric motor powered by a stand alone solar panel powers the system. If wind and sun conditions are both less than ideal, mains electricity is often the only solution to maintain a constant ventilation flow rate.

An electronic control module was designed as a smart solution to switch between the energy sources of wind, sun and mains electricity. The module has adjustable inputs for wind speed and solar intensity. This allows a user to adjust the point at which the system switches over to mains electricity. Shun plans to turn his prototype into a working trial system and install it on a purpose- built test building within the next six months. The industrial partner, Edmonds, a business unit of CSR Limited, which has supported the development of the concept, stands ready to assess the advantages of the system with the view of possibly taking the concept to market.

Simon Shun is one of 16 young scientists presenting their research to the public for the first time thanks to Fresh Science, a national program sponsored by the Federal and Victorian Governments. One of the Fresh Scientists will win a trip to the UK courtesy of British Council Australia to present his or her work to the Royal Institution.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/simon_shun.htm

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>