Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny ion pump sets new standard in cooling hot computer chips

25.08.2006
University of Washington researchers have succeeded in building a cooling device tiny enough to fit on a computer chip that could work reliably and efficiently with the smallest microelectronic components.

The device, which uses an electrical charge to create a cooling air jet right at the surface of the chip, could be critical to advancing computer technology because future chips will be smaller, more tightly packed and are likely to run hotter than today's chips. As a result, tomorrow's computers will need cooling systems far more efficient than the fans and heat sinks that are used today.

"With this pump, we are able to integrate the entire cooling system right onto a chip," said Alexander Mamishev, associate professor of electrical engineering and principal investigator on the project. "That allows for cooling in applications and spaces where it just wasn't realistic to do before." The micro-pump also represents the first time that anyone has built a working device at this scale that uses this method, Mamishev added.

"The idea has been around for several years," he said. "But until now it hasn't been physically demonstrated in terms of a working prototype."

Mamishev and doctoral students Nels Jewell-Larsen and Chi-Peng Hsu presented a paper on the device at the American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers Joint Thermophysics and Heat Transfer Conference earlier this summer and are scheduled to give an additional presentation this fall. In addition, the UW researchers and collaborators with Kronos Advanced Technologies and Intel Corp. have been awarded a $100,000 grant from the Seattle-based Washington Technology Center for the second phase of the project.

The device utilizes an electrical field to accelerate air to speeds previously possible only with the use of traditional blowers. Trial runs showed that the prototype device significantly cooled an actively heated surface on just 0.6 watts of power.

The prototype cooling chip contains two basic components: an emitter and a collector. The emitter has a tip radius of about 1 micron – so small that up to 300 tips could fit across a human hair. The tip creates air ions, electrically charged particles that are propelled in an electric field to the collector surface. As the ions travel from tip to collector, they create an air jet that blows across the chip, taking heat with it. The volume of the airflow can be controlled by varying the voltage between the emitter and collector.

The findings are significant for future computing applications, which will incorporate denser circuitry to boost computing power. More circuitry equals more heat and a greater need for innovative cooling technologies that go beyond bulky, noisy and relatively inefficient fans and heat sinks – metal plates with fins to increase surface area and help dissipate heat. Circulating liquids among the chips to draw away heat is one possibility, but computer chips and liquids don't mix well; the cost of a cooling system breakdown could be steep.

"Our goal is to develop advanced cooling systems that can be built right onto next-generation microchips," Jewell-Larsen said. "Such systems could handle both the increased heat generation of future chips and the fact that they would be distributed throughout a computer or electronic device." Added Mamishev: "It promises a new dimension in thermal management strategy and design."

A few challenges remain, he added. One involves developing the mathematical models to control vast systems of chips with built-in coolers. "These pumps end up being very complicated, dynamic systems," Mamishev said. "You have flow on a microscale, electrohydrodynamic forces, electrical fields and moving charges."

A second challenge is identifying the best materials to use in building devices that are high-performing and durable. "There is evidence that nanotubes and other nano-structures could give significant performance gains," Jewell-Larsen said. "Those are avenues we are currently pursuing."

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature
28.06.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>